Skip to main content
Log in

The effect of carboxylic acids on the oxidation of coated iron oxide nanoparticles

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

57Fe Mössbauer spectroscopy, XRD, and TEM were used to investigate the effect of mandelic- and salicylic acid coatings on the iron oxide nanoparticles. These two carboxylic acids have similar molecules size and stoichiometry, but different structure and acidity. Significant differences were observed between the Mössbauer spectra of samples coated with mandelic acid and salicylic acid. These results indicate that the occurrence of iron microenvironments in the mandelic- and salicylic acid-coated iron oxide nanoparticles is different. The results can be interpreted in terms of the influence of the acidity of carboxylic acids on the formation, core/shell structure, and oxidation of coated iron oxide nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anand B, Sharma RS, Nanjundaradhya NV, Venkatesh PR (2012) Antiviral activity of silver nanoparticles synthesized by fungal strain Aspergillus niger. Nano Sci Nano Technol 6(1):9–13

    Google Scholar 

  • Andrade ÂL, Souza DM, Pereira M, Fabris JD, Domingues RZ (2010) pH effect on the synthesis of magnetite nanoparticles by the chemical reduction-precipitation method. Quím Nova 33(3):524–527

    Article  Google Scholar 

  • Blume M, Tjon JA (1968) Mössbauer spectra in a fluctuating environment. Phys Rev 165:446–456

    Article  Google Scholar 

  • Burton AW, Ong K, Rea T, Chan IY (2009) On the estimation of average crystallite size of zeolites from the Scherrer equation: a critical evaluation of its application to zeolites with one-dimensional pore systems. Microporous Mesoporous Mater 117:75–90

    Article  Google Scholar 

  • Chowdhury SR, Yanful EK, Pratt AR (2011) Arsenic removal from aqueous solutions by mixed magnetite-maghemite nanoparticles. Environ Earth Sci 64:411–423

    Article  Google Scholar 

  • Colombo U, Fagherazzi G, Gazzarrini S, Lanzavecchia G, Sroni G (1968) Mechanisms in the first stage of oxidation of magnetites. Nature 219:1036–1037

    Article  Google Scholar 

  • Daniels JM, Rosencwaig A, (1969) Mössbauer spectroscopy of stoichiometric and non-stoichiometric magnetite. J Phys Chem Solids Pergamon Press Vol. 30, pp. 156l- 1571

  • da Silva S. W, Guilherme L. R., de Oliveira A.l C., Garg V. K., Rodrigues P. A. M., Coaquira J.A. H., da Silva Ferreira, Q. de Melo G. H. F., Lengyel A., Szalay R., Homonnay Z., Klencsár Z., Tolnai G., Kuzmann E, (2017) Mössbauer and Raman spectroscopic study of oxidation and reduction of iron oxide nanoparticles promoted by various carboxylic acid layers, J Radioanal Nucl Chem, Volume 312, Issue 1, pp 111–119

  • de Bakker PMA, De Grave E, Vandenberghe RE, Bowen LH (1990) Mössbauer study of small-particle maghemite. Hyperfine Interact 54:493–498

    Article  Google Scholar 

  • El Mendili Y, Grasset F, Randrianantoandro N, Nerambourg N, Greneche JM, Bardeau JF (2015) Insights into the mechanism related to the phase transition from γ-Fe2O3 to α-Fe2O3 nanoparticles induced by thermal treatment and laser irradiation. J Phys Chem C 119:10662–10668

    Article  Google Scholar 

  • Fazioa E, Santoroa M, Lentini G, Franco D, Guglielmino SPP, Neri F (2016) Iron oxide nanoparticles prepared by laser ablation: synthesis, structural properties and antimicrobial activity. Colloids Surf A Physicochem Eng Asp 490:98–103

    Article  Google Scholar 

  • Frison R, Cernuto G, Cervellino A, Zaharko O, Colonna GM, Guagliardi A, Masciocchi N (2013) Magnetite–maghemite nanoparticles in the 5–15 nm range: correlating the core–shell composition and the surface structure to the magnetic properties. A total scattering study. Chem Mater 25:4820–4827

    Article  Google Scholar 

  • Greneche JM (2003) Structural and magnetic properties of nanostructured oxides investigated by 57Fe Mössbauer spectrometry. Hyperfine Interact 148/149:79–89

    Article  Google Scholar 

  • Iyengar SJ, Joy M, Mohamed AP, Samanta S, Ghosh CK, Ghosh S, (2014) Fabrication of magnetite nanocrystals in alcohol/water mixed solvents: catalytic and colloid property evaluation, RSC Adv, 4

  • Goloverda G, Jackson B, Kidd C, Kolesnichenko V (2009) Synthesis of ultrasmall magnetic iron oxide nanoparticles and study of their colloid and surface chemistry. J Magn Magn Mater 321(10):1372–1376

    Article  Google Scholar 

  • Johnson CE, Johnson JA, Hah HY, Cole M, Gray S, Kolesnichenko V, Kucheryavy P, Goloverda G (2016) Hyperfine Interact 237: 27, 2–10

  • Kim W, Suh CY, Cho SW, Roh KM, Kwon H, Song K, Shon IJ (2012) A new method for the identification and quantification of magnetite-maghemite mixture using conventional X-ray diffraction technique. Talanta 94:348–352

    Article  Google Scholar 

  • Khalil IM (2015) Co-precipitation in aqueous solution synthesis of magnetite nanoparticles using iron(III) salts as precursors. Arab J Chem 8(2):279–284

    Article  Google Scholar 

  • Klencsar Z, Kuzmann E, Vertes A (1996) User-friendly software for Mössbauer spectrum analysis. J Radional Chem Lett 210:105

    Article  Google Scholar 

  • Lee J, Kwon SG, Park JG, Hyeon T (2015) Water-dispersible ferrimagnetic iron oxide nanocubes with extremely high r2 relaxivity for highly sensitive in vivo MRI of tumors. Nano Lett 15(7):4337–4342

    Article  Google Scholar 

  • Ling D, Lee N, Hyeon T (2015) Chemical synthesis and assembly of uniformly sized iron oxide nanoparticles for medical applications. Acc Chem Res 48(5):1276–1285

    Article  Google Scholar 

  • Mikhaylova M, Kim DK, Bobrysheva N, Osmolowsky M, Semenov V, Tsakalakos T, Muhammed M (2004) Superparamagnetism of magnetite nanoparticles: dependence on surface modification. Langmuir 20:2472–2477

    Article  Google Scholar 

  • Mousa MH, Dong YI, Davies J (2016) Recent advances in bionanocomposites: preparation, properties, and applications. Int J Polym Mater Polym Biomaterials 65(5):225–254

    Article  Google Scholar 

  • Nazari M, Ghasemi N, Maddah H, Motlagh MM (2014) Synthesis and characterization of maghemite nanopowders by chemical precipitation method. J Nanostruct Chem 4:99

    Article  Google Scholar 

  • Park EJ, Lee GH, Shim JH, Cho MH, Lee BS, Kim YB, Kim JH, Kim Y, Kim DW (2015) Comparison of the toxicity of aluminum oxide nanorods with different aspect ratio. Arch Toxicology 88:1771–1782

    Article  Google Scholar 

  • Pati SS, Singh LH, Guimarães EM, Mantilla J, Coaquira JAH, Oliveira AC, Sharma VK, Garg VK (2016) Magnetic chitosan-functionalized Fe3O4@Au nanoparticles: synthesis and characterization. J Alloys Compd 684:68–74

    Article  Google Scholar 

  • Regmi R, Black C, Sudakar C, Keyes PH, Naik R, Lawes G, Vaishnava P, Rablau C, Kahn D, Lavoie M, Garg VK, Oliveira AC (2009) Effects of fatty acid surfactants on the magnetic and magnetohydrodynamic properties of ferrofluids. J Appl Phys 106:113902

    Article  Google Scholar 

  • Sahoo Y, Goodarzi A, Swihart MT, Ohulchanskyy TY, Kaur N, Furlani EP, Prasad PN (2005) Aqueous ferrofluid of magnetite nanoparticles: fluorescence labeling and magnetophoretic control. J Phys Chem B 109:3879–3885

    Article  Google Scholar 

  • Santos JG, Silveira LB, Fegueredo PHS, Araujo BF, Peternele WS, Rodriguez AFR, Vilela EC, Garg VK, Oliveira AC, Azevedo RB, Morais PC (2012) New magnetic fluid developed with natural organic compounds biocompatible. J Nanosci Nanotechnol 12:4757–4761

    Article  Google Scholar 

  • Sjogren CE, Johansson C, Naevestad A, Sontum PC, BrileySaebo K (1997) Crystal size and properties of superparamagnetic iron oxide (SPIO) particles. Magn Reson Imaging 15(1):55–67

    Article  Google Scholar 

  • Sundara S, Mariappanb R, Piraman S (2014) Synthesis and characterization of amine modified magnetite nanoparticles as carriers of curcumin-anticancer drug. Powder Technol 266:321–328

    Article  Google Scholar 

  • Sundaram PA, Augustine R, Kannan M (2012) Extracellular biosynthesis of iron oxide nanoparticles by Bacillus subtilis strains isolated from rhizosphere soil. Biotechnol Bioprocess Eng 17:835–840

    Article  Google Scholar 

  • Thapa D, Palkar VR, Kurup MB, Malik SK (2004) Properties of magnetite nanoparticles synthesized through a novel chemical route. Mater Lett 58(21):2692–2694

    Article  Google Scholar 

Download references

Funding

This work was supported by the Hungarian National Research, Development and Innovation Office – NKFIH (K115784 and K115913), the Brazilian CAPES (No. A127/2013), and Hungarian-Croatian Intergovernmental S & T (No. TET 16-1-2016-0002) grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernő Kuzmann.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lengyel, A., Tolnai, G., Klencsár, Z. et al. The effect of carboxylic acids on the oxidation of coated iron oxide nanoparticles. J Nanopart Res 20, 137 (2018). https://doi.org/10.1007/s11051-018-4247-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-018-4247-x

Keywords

Navigation