Skip to main content
Log in

Mössbauer and Raman spectroscopic study of oxidation and reduction of iron oxide nanoparticles promoted by various carboxylic acid layers

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The effect of coating with nine different carboxylic acids (glycolic, propionic, lactic, malic, tartaric, citric, mandelic, caproic and caprylic) on nanostructured magnetite (D ~ 10 nm) was studied by Raman and photoacoustic, magnetic and 57Fe Mössbauer measurements. Mössbauer spectra of frozen suspensions showed dominantly magnetically split envelopes at lower temperatures, which were evaluated by hyperfine field distribution method. Mössbauer and Raman spectroscopy indicated similar variation of relative occurrence of magnetite and maghemite phases. These results are discussed on the basis of the hypothesis that different carboxylic acids can promote either the oxidation or reduction of iron oxide nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Radad K, Al-Shraim M, Moldzio R, Rausch WD (2012) Environ Toxicol Pharmacol 34(3):661–672

    Article  CAS  Google Scholar 

  2. Chen CL, Zhang H, Ye Q, Hsieh HY, Hitchens TK, Shen HH, Liu L, Wu YJ, Foley LM, Wang SJ, Ho C (2011) Mol Imaging Biol 5:825–839

    Article  Google Scholar 

  3. Lunacek J, Lesnak M, Jandacka P, Dvorsky R, Repkova J, Seidlerova J, Vitkovska N (2015) Sep Sci Technol 50(16):2606–2615

    CAS  Google Scholar 

  4. Holban AM, Grumezescu AM, Gestal MC, Mogoanta L, Mogosanu GD (2013) Curr Org Chem 18(2):185–191

    Article  Google Scholar 

  5. Chandra S, Mehta S, Nigam S, Bahadur D (2010) New J Chem 34:648–655

    Article  CAS  Google Scholar 

  6. Sui YC, Skomski R, Sorge KD, Sellmyer DJ (2004) J Appl Phys 95:7151

    Article  CAS  Google Scholar 

  7. Lakshmanan R, Okoli C, Boutonnet M, Järås S, Rajarao GK (2013) Bioresour Technol 129:612–615

    Article  CAS  Google Scholar 

  8. Estelrich J, Escribano E, Queralt J, Busquets MA (2015) Int J Mol Sci 16:8070–8101

    Article  CAS  Google Scholar 

  9. Voit W, Kim DK, Zapka W, Muhammed M, Rao KV (2001) MRS Proceedings (2001), vol 676. Cambridge University Press, Cambridge

  10. Albrecht T, Bührer C, Fähnle M, Maier K, Platzek D, Reske J (1997) Appl Phys A 65(2):21

    Article  Google Scholar 

  11. Yildirimer L, Thanh NTK, Loizidou M, Seifalian AM (2011) Nano Today 6(6):585–607

    Article  CAS  Google Scholar 

  12. Soenen SJ, De Cuyper M, De Smedt SC, Braeckmans K (2012) Methods Enzymol 509:195–224

    Article  CAS  Google Scholar 

  13. Lei L, Ling-Ling J, Yun Z, Gang L (2013) Chin Phys B 22(12):127503

    Article  Google Scholar 

  14. Wu W, Wu Z, Yu T, Jiang C, Kim WS (2015) Sci Technol Adv Mater 16(023501):43

    Google Scholar 

  15. Khalil IM (2015) Arab J Chem 8(2):279–284

    Article  CAS  Google Scholar 

  16. Ray S, Nath SK, Kumar A, Agarwala RC, Agarwala V, Chaudhari GP, Daniel BSS (2009) Adv Mater Res 67:221–226

    Article  Google Scholar 

  17. Chen D, Ni S, Chen Z (2007) China Particuol 5(5):357–358

    Article  CAS  Google Scholar 

  18. Sasaki T, Zeng X, Koshizaki N (1998) MRS Proceedings (1998), vol 526, Cambridge University Press, Cambridge

  19. Beketov IV, Safronov AP, Medvedev AI, Alonso J, Kurlyandskaya GV, Bhagat SM (2012) AIP Adv 2:022154

    Article  Google Scholar 

  20. Obayemi JD, Dozie-Nwachukwu S, Danyuo Y, Odusanya OS, Anuku N, Malatesta K, Soboyejo WO (2015) Mater Sci Eng, C 46(1):482–496

    Article  CAS  Google Scholar 

  21. Elblbesy MAA, Madbouly AK, Hamdan TAA (2014) Am J Nano Res Appl 2(5):98–103

    Google Scholar 

  22. Khalafalla E, Reimers G (1980) IEEE Trans Magn 16:178

    Article  Google Scholar 

  23. Regmi R, Black C, Sudakar C, Keyes PH, Naik R, Lawes G, Vaishnava P, Rablau C, Kahn D, Lavoie M, Garg VK, Oliveira AC (2009) J Appl Phys 106:113902

    Article  Google Scholar 

  24. Racuciu M, Creanga DE, Airinei A, Badescu V, Apetroaie N (2007) Magnetohydrodynamics 43(4):11–18

    Google Scholar 

  25. de Sousa ME, Fernández van Raap MB, Rivas PC, Zélis PM, Girardin P, Pasquevich GA, Alessandrini JL, Muraca D, Sánchez FH (2013) J Phys Chem C 117:5436–5445

    Article  Google Scholar 

  26. Soler MAG, Alcantara GB, Soares FQ, Viali WR, Sartoratto PPC, Fernandez JRL, da Silva SW, Garg VK, Oliveira AC, Morais PC (2007) Surf Sci 601(18):3921–3925

    Article  CAS  Google Scholar 

  27. Goloverda G, Jackson B, Kidd C, Kolesnichenko V (2009) J Magn Magn Mater 321(10):1372–1376

    Article  CAS  Google Scholar 

  28. Wei X, Wei Z, Zhang L, Liu Y, He D (2011) J Colloid Interface Sci 354:76–81

    Article  CAS  Google Scholar 

  29. Burdukova E, Ishida N, Shaddick T, Franks GV (2011) J Colloid Interface Sci 354:82–88

    Article  CAS  Google Scholar 

  30. Szekeres M, Tóth IY, Illés E, Hajdú A, Zupkó I, Farkas K, Oszlánczi G, Tiszlavicz L, Tombácz E (2013) Int J Mol Sci 14:14550–14574

    Article  Google Scholar 

  31. Kazmierczaka M, Pogorzelec-Glasera K, Hilczera A, Jurgab S, Majchrzyckic Ł, Nowickic M, Czajkac R, Matelskic F, Pankiewiczd R, Łeskad B, Kepinskie L, Andrzejewskia B (2014) Mater Technol 48:59–62

    Google Scholar 

  32. Daou TJ, Pourroy G, Begin-Colin S, Greneche JM, Ulhaq-Bouillet C, Legare P, Bernhardt P, Leuvrey C, Rogez G (2006) Chem Mater 18:4399–4404

    Article  CAS  Google Scholar 

  33. Tang J, Myers M, Bosnick KA, Brus LE (2003) J Phys Chem B 107:7501–7506

    Article  CAS  Google Scholar 

  34. Chamritski I, Burns G (2005) J Phys Chem B 109:4965–4968

    Article  CAS  Google Scholar 

  35. Zakharova IN, Shipilin MA, Alekseev VP, Shipilin AM (2012) Tech Phys Lett 38(1):55–58 (ISSN 1063_7850)

    Article  CAS  Google Scholar 

  36. Iyengar SJ, Joy M, Ghosh CK, Dey S, Kotnalad RK, Ghosha S (2014) RSC Adv 4:64919–64929

    Article  CAS  Google Scholar 

  37. Ozdemiar O, Dunlop DJ, Moskowitz BM (1993) Geophys Res Lett 20(16):1671–1674

    Article  Google Scholar 

  38. El Mendili Y, Grasset F, Randrianantoandro N, Nerambourg N, Greneche JM, Bardeau JF (2015) J Phys Chem C 119:10662–10668

    Article  Google Scholar 

  39. Santos JG, Silveira LB, Fegueredo PHS, Araújo BF, Peternele WS, Rodriguez AFR, Vilela EC, Garg VK, Oliveira AC, Azevedo RB, Morais PC (2012) J Nanosci Nanotechnol 12:1–5

    Article  Google Scholar 

  40. Pati SS, Singh LH, Guimaraes EM, Mantilla J, Coaquira JAH, Oliveira AC, Sharma VK, Garg VK (2016) J Alloys Compd 684(5):68–74

    Article  CAS  Google Scholar 

  41. Klencsár Z, Kuzmann E, Vértes A (1996) J Radional Chem Lett 210:105

    Article  Google Scholar 

  42. Oliveira AC, Tronconi AL, Buske N, Morais PC (2002) J Magn Magn Mater 252:56

    Article  CAS  Google Scholar 

  43. Laurent S, Mahmoudi M (2011) Int J Mol Epidemiol Genet 2(4):367–390

    CAS  Google Scholar 

  44. Wasilewski P, Günther K (1999) Geophys Res Lett 26(15):2275–2278

    Article  Google Scholar 

  45. Kuzmann E, Nagy S, Vértes A, Weiszburg TG, Garg VK (1998) In: Vertes A, Nagy S, Süvegh K (eds) Geological and mineralogical applications of Mössbauer spectroscopy in Nuclear Methods in Mineralogy and Geology: Techniques and Applications. Plenum Press, New York, pp 285–376

    Chapter  Google Scholar 

  46. Rümenapp C, Wagner FE, Gleich B (2015) J Magn Magn Mater 380:241–245

    Article  Google Scholar 

  47. Hesse J, Rübartsch A (1974) J Phys E 7:526

    Article  Google Scholar 

  48. da Silva SW, Nakagomi F, Silva MS, Franco A Jr, Garg VK, Oliveira AC, Morais PC (2012) J Nanopart Res 14:798

    Article  Google Scholar 

  49. Shebanova ON, Lazor P (2003) J Solid State Chem 174:424–430

    Article  CAS  Google Scholar 

  50. Wohlfarth EP (1980) Ferromagnetic materials: a handbook on the properties of magnetically ordered substances. Elsevier, Amsterdam

    Google Scholar 

  51. He YP, Miao YM, Li CR, Wang SQ, Cao L, Xie SS, Yang GZ, Zou BS, Bruda C (2005) Phys Rev B 71:125411

    Article  Google Scholar 

  52. Vargas H, Miranda LCM (1988) Phys Rep 161:43

    Article  CAS  Google Scholar 

  53. Frison R, Cernuto G, Cervellino A, Zaharko O, Colonna GM, Guagliardi A, Masciocchi N (2013) Chem Mater 25:4820–4827

    Article  CAS  Google Scholar 

  54. Mérela DS, Doa MLT, Gaillarda S, Dupaud P, Renauda JL (2015) Coord Chem Rev 288:50–68

    Article  Google Scholar 

  55. Cornell RM, Schwertmann U (2006) The iron oxides: structure, properties, reactions, Occurrences and Uses. Wiley, Cambridge

    Google Scholar 

  56. McEntee M, Tang W, Neurock M, Yates JT Jr (2015) ACS Catal 5:744–753

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants of CAPES (No A127/2013) and OTKA (No K115913 and K115784). This work was carried out within the Agreement of Cooperation between Eötvös Loránd University (Budapest) and Universidade de Brasília (Brasília).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernő Kuzmann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, S.W., Guilherme, L.R., de Oliveira, A.C. et al. Mössbauer and Raman spectroscopic study of oxidation and reduction of iron oxide nanoparticles promoted by various carboxylic acid layers. J Radioanal Nucl Chem 312, 111–119 (2017). https://doi.org/10.1007/s10967-017-5195-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-017-5195-0

Keywords

Navigation