Skip to main content

Advertisement

Log in

Host-directed strategies using lipid nanoparticles to reduce mycobacteria survival

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Antibiotic-resistant infections and the stagnations in the development of new drugs have increased the demand for new therapeutic approaches against Mycobacterium tuberculosis. Innovative systems that are able to target and eradicate the bacteria in the infected host cells may represent a therapeutic breakthrough while avoiding latency. The development of nanosystems aiming a controlled and targeted intracellular drug release, have proved to increase cytosolic therapeutic concentration while reducing undesired side effects. This work’s main goal was to develop a host-directed strategy against mycobacterial infection through the design of a biocompatible nanocarrier for phage-derived protein delivery, using M. smegmatis as model. Since mycobacterial pathogenicity is strongly supported by the presence of lipids in the cell wall, their degradation induces bacterial destruction through cell wall hydrolysis. Phage-based lipolytic enzymes such as, LysB a mycolylarabinogalactan esterase, represent an appealing therapeutic approach. The herein proposed Ms6 LysB-containing lipid nanocarrier (SLN_LysB) explores the known advantages of nanomedicine-based systems for phagocytic cells selectively targeting thus allowing LysB intracellular accumulation and a more pronounced mycobacterial infection eradication. Adsorption efficiency value indicates the potential of this system as a protein nanocarrier. Moreover, promising outcomes were obtained in host-infected macrophages treated with SLN_LysB. The results show that the herein proposed strategy was more effective in inhibiting the growth of M. smegmatis than free LysB, which might be related to the nanocarrier internalization. Acting as effective protein nanocarriers, the protein-guided delivery in the infected phagocytic cells allows it to exert its hydrolytic action on the lipid layer of the Mycobacterium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aboutaleb E, Noori M, Gandomi N, Atyabi F, Fazeli M, Jamalifar H, Dinarvand R (2012) Improved antimycobacterial activity of rifampin using solid lipid nanoparticles. Int Nano Lett 2:1–8. doi:10.1186/2228-5326-2-33

    Article  Google Scholar 

  • Baker JJ, Johnson BK, Abramovitch RB (2014) Slow growth of Mycobacterium tuberculosis at acidic pH is regulated by phoPR and host-associated carbon sources. Mol Microbiol 94:56–69. doi:10.1111/mmi.12688

    Article  Google Scholar 

  • Broxmeyer L et al (2002) Killing of Mycobacterium avium and Mycobacterium tuberculosis by a mycobacteriophage delivered by a nonvirulent mycobacterium: a model for phage therapy of intracellular bacterial pathogens. J Infect Dis 186:1155–1160. doi:10.1086/343812

    Article  Google Scholar 

  • Caminero JA (2005) Management of multidrug-resistant tuberculosis and patients in retreatment. Eur Respir J 25:928–936. doi:10.1183/09031936.05.00103004

    Article  Google Scholar 

  • Chuan J, Li Y, Yang L, Sun X, Zhang Q, Gong T, Zhang Z (2013) Enhanced rifampicin delivery to alveolar macrophages by solid lipid nanoparticles. J Nanopart Res 15:1–9. doi:10.1007/s11051-013-1634-1

    Article  Google Scholar 

  • Coates AR, Hu Y (2007) Novel approaches to developing new antibiotics for bacterial infections. Br J Pharmacol 152:1147–1154. doi:10.1038/sj.bjp.0707432

    Article  Google Scholar 

  • Crucet M, Wust SJ, Spielmann P, Luscher TF, Wenger RH, Matter CM (2013) Hypoxia enhances lipid uptake in macrophages: role of the scavenger receptors Lox1, SRA, and CD36. Atherosclerosis 229:110–117. doi:10.1016/j.atherosclerosis.2013.04.034

    Article  Google Scholar 

  • Dey B, Bishai WR (2014) Crosstalk between Mycobacterium tuberculosis and the host cell. Semi Immunol 26:486–496. doi:10.1016/j.smim.2014.09.002

    Article  Google Scholar 

  • Eckstein TM et al (2006) A major cell wall lipopeptide of Mycobacterium avium subspecies paratuberculosis. J Biol Chem 281:5209–5215. doi:10.1074/jbc.M512465200

    Article  Google Scholar 

  • Flynn JL (2004) Immunology of tuberculosis and implications in vaccine development. Tuberculosis (Edinburgh, Scotland) 84:93–101

    Article  Google Scholar 

  • Flynn JL, Chan J (2001) Immunology of tuberculosis. Annu Rev Immunol 19:93–129. doi:10.1146/annurev.immunol.19.1.93

    Article  Google Scholar 

  • Fu LM, Fu-Liu CS (2002) Is Mycobacterium tuberculosis a closer relative to Gram-positive or Gram-negative bacterial pathogens? Tuberculosis (Edinburgh, Scotland) 82:85–90

    Article  Google Scholar 

  • Gan Y, Wu T, Liu P, Guo S (2014) Characterization and classification of Bo4 as a cluster G mycobacteriophage that can infect and lyse M. tuberculosis. Arch Microbiol 196:209–218. doi:10.1007/s00203-014-0954-6

    Article  Google Scholar 

  • Gil F (2008) Characterization of the gene product of lysB from the lysis module of the mycobacteriophage Ms6. PhD Dissertation, Faculty of Pharmacy, University of Lisbon

  • Gil F, Catalao MJ, Moniz-Pereira J, Leandro P, McNeil M, Pimentel M (2008) The lytic cassette of mycobacteriophage Ms6 encodes an enzyme with lipolytic activity. Microbiology 154:1364–1371. doi:10.1099/mic.0.2007/014621-0

    Article  Google Scholar 

  • Gil F, Grzegorzewicz AE, Catalao MJ, Vital J, McNeil MR, Pimentel M (2010) Mycobacteriophage Ms6 LysB specifically targets the outer membrane of Mycobacterium smegmatis. Microbiology 156:1497–1504. doi:10.1099/mic.0.032821-0

    Article  Google Scholar 

  • Guidry TV, Hunter RL, Actor JK (2007) Mycobacterial glycolipid trehalose 6,6′-dimycolate-induced hypersensitive granulomas: contribution of CD4(+) lymphocytes. Microbiology (Reading, England) 153:3360–3369. doi:10.1099/mic.0.2007/010850-0

    Article  Google Scholar 

  • Guirado E, Schlesinger LS (2013) Modeling the Mycobacterium tuberculosis granuloma—the critical battlefield in host immunity and disease. Front Immunol 4:98. doi:10.3389/fimmu.2013.00098

    Article  Google Scholar 

  • Guirado E, Schlesinger LS, Kaplan G (2013) Macrophages in tuberculosis: friend or foe. Sem immunopathol 35:563–583. doi:10.1007/s00281-013-0388-2

    Article  Google Scholar 

  • Ishikawa E et al (2009) Direct recognition of the mycobacterial glycolipid, trehalose dimycolate, by C-type lectin Mincle. J Exp Med 206:2879–2888. doi:10.1084/jem.20091750

    Article  Google Scholar 

  • Jawahar N, Reddy G (2012) Nanoparticles: a novel pulmonary drug delivery system for tuberculosis. J Pharm Sci Res 4:1901–1906

    Google Scholar 

  • Kandasamy R, Chandrasekaran K (2013) Sustained release aerosol for pulmonary drug delivery system: a review. Int J Pharm Pharm Sci 5:126–130

    Google Scholar 

  • Kaufmann SH et al (2014) Progress in tuberculosis vaccine development and host-directed therapies—a state of the art review. Lancet Respir med 2:301–320. doi:10.1016/s2213-2600(14)70033-5

    Article  Google Scholar 

  • Lange C et al (2014) Management of patients with multidrug-resistant/extensively drug-resistant tuberculosis in Europe: a TBNET consensus statement. Eur respir J 44:23–63. doi:10.1183/09031936.00188313

    Article  Google Scholar 

  • Leung CC, Lange C, Zhang Y (2013) Tuberculosis: current state of knowledge: an epilogue. Respirology (Carlton, Vic) 18:1047–1055. doi:10.1111/resp.12156

    Google Scholar 

  • Lima VM et al (2001) Role of trehalose dimycolate in recruitment of cells and modulation of production of cytokines and NO in tuberculosis. Infect Immun 69:5305–5312

    Article  Google Scholar 

  • Mathema B, Kurepina NE, Bifani PJ, Kreiswirth BN (2006) Molecular Epidemiology of Tuberculosis: current insights. Clin Microbiol Rev 19:658–685. doi:10.1128/CMR.00061-05

    Article  Google Scholar 

  • McNerney R, Traore H (2005) Mycobacteriophage and their application to disease control. J Appl Microbiol 99:223–233. doi:10.1111/j.1365-2672.2005.02596.x

    Article  Google Scholar 

  • Migliori GB et al (2007) Clinical and operational value of the extensively drug-resistant tuberculosis definition. Eur Respir J 30:623–626. doi:10.1183/09031936.00077307

    Article  Google Scholar 

  • Narasimhan P, Wood J, MacIntyre CR, Mathai D (2013) Risk Factors for Tuberculosis. Pulm Med 2013:828939. doi:10.1155/2013/828939

    Article  Google Scholar 

  • Palecanda A et al (1999) Role of the scavenger receptor MARCO in alveolar macrophage binding of unopsonized environmental particles. J Exp Med 189:1497–1506

    Article  Google Scholar 

  • Palomino JC, Martin A (2013) Tuberculosis clinical trial update and the current anti-tuberculosis drug portfolio. Curr Med Chem 20:3785–3796

    Article  Google Scholar 

  • Pandey R, Khuller GK (2005) Solid lipid particle-based inhalable sustained drug delivery system against experimental tuberculosis. Tuberculosis 85:227–234. doi:10.1016/j.tube.2004.11.003

    Article  Google Scholar 

  • Park CK, Kwon YS (2014) Respiratory review of 2014: tuberculosis and nontuberculous mycobacterial pulmonary disease. Tuberc Respir Dis 77:161–166. doi:10.4046/trd.2014.77.4.161

    Article  Google Scholar 

  • Peiser L, Gordon S (2001) The function of scavenger receptors expressed by macrophages and their role in the regulation of inflammation. Microbes infect/Institut Pasteur 3:149–159

    Article  Google Scholar 

  • Peng L, Chen BW, Luo YA, Wang GZ (2006) Effect of mycobacteriophage to intracellular mycobacteria in vitro. Chin Med J 119:692–695

    Google Scholar 

  • Pieters J (2008) Mycobacterium tuberculosis and the macrophage: maintaining a balance. Cell Host Microbe 3:399–407. doi:10.1016/j.chom.2008.05.006

    Article  Google Scholar 

  • Roy A et al (2014) Effect of BCG vaccination against Mycobacterium tuberculosis infection in children: systematic review and meta-analysis. BMJ (Clinical research ed) 349:g4643. doi:10.1136/bmj.g4643

    Google Scholar 

  • Shegokar R, Al Shaal L, Mitri K (2011) Present status of nanoparticle research for treatment of tuberculosis. J pharm pharm sci 14:100–116

    Google Scholar 

  • Sundaramurthy V, Pieters J (2007) Interactions of pathogenic mycobacteria with host macrophages. Microbes Infect 9:1671–1679. doi:10.1016/j.micinf.2007.09.007

    Article  Google Scholar 

  • Sung JC, Pulliam BL, Edwards DA (2007) Nanoparticles for drug delivery to the lungs. Trends Biotechnol 25:563–570. doi:10.1016/j.tibtech.2007.09.005

    Article  Google Scholar 

  • Tripathi RP, Tewari N, Dwivedi N, Tiwari VK (2005) Fighting tuberculosis: an old disease with new challenges. Med Res Rev 25:93–131. doi:10.1002/med.20017

    Article  Google Scholar 

  • Videira MA (2008) Lipid nanoparticles as drug delivery systems for pulmonary administration. PhD Dissertation, Faculty of Pharmacy, University of Lisbon

  • Videira MA, Botelho MF, Santos AC, Gouveia LF, de Lima JJ, Almeida AJ (2002) Lymphatic uptake of pulmonary delivered radiolabelled solid lipid nanoparticles. J Drug Target 10:607–613. doi:10.1080/1061186021000054933

    Article  Google Scholar 

  • Videira MA, Gano L, Santos C, Neves M, Almeida AJ (2006) Lymphatic uptake of lipid nanoparticles following endotracheal administration. J Microencapsul 23:855–862. doi:10.1080/02652040600788221

    Article  Google Scholar 

  • Videira M, Almeida AJ, Fabra A (2012) Preclinical evaluation of a pulmonary delivered paclitaxel-loaded lipid nanocarrier antitumor effect. Nanomedicine 8:1208–1215. doi:10.1016/j.nano.2011.12.007

    Article  Google Scholar 

  • Weber S, Zimmer A, Pardeike J (2014) Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) for pulmonary application: a review of the state of the art. Eur J Pharm Biopharm 86:7–22. doi:10.1016/j.ejpb.2013.08.013

    Article  Google Scholar 

  • Welin A, Lerm M (2012) Inside or outside the phagosome? the controversy of the intracellular localization of Mycobacterium tuberculosis. Tuberculosis (Edinburgh, Scotland) 92:113–120. doi:10.1016/j.tube.2011.09.009

    Article  Google Scholar 

  • Westwater C, Kasman LM, Schofield DA, Werner PA, Dolan JW, Schmidt MG, Norris JS (2003) Use of genetically engineered phage to deliver antimicrobial agents to bacteria: an alternative therapy for treatment of bacterial infections. Antimicrob Agents Chemother 47:1301–1307. doi:10.1128/aac.47.4.1301-1307.2003

    Article  Google Scholar 

  • World Health Organization (2014) Global Tuberculosis Report. In: World Health Organization (ed)

  • Yacoby I, Shamis M, Bar H, Shabat D, Benhar I (2006) Targeting antibacterial agents by using drug-carrying filamentous bacteriophages. Antimicrob Agents Chemother 50:2087–2097. doi:10.1128/aac.00169-06

    Article  Google Scholar 

Download references

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Videira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pereira, L., Diogo, J., Mateus, R. et al. Host-directed strategies using lipid nanoparticles to reduce mycobacteria survival. J Nanopart Res 17, 73 (2015). https://doi.org/10.1007/s11051-015-2892-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-015-2892-x

Keywords

Navigation