Skip to main content
Log in

Cerium oxide nanoparticles protect primary mouse bone marrow stromal cells from apoptosis induced by oxidative stress

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Cerium oxide nanoparticles (nanoceria) have been widely used in industries and biomedical fields due to its unique properties. Previous biodistribution studies of nanoceria in vivo have shown that they are accumulated in the bone of mice after intravenous administration, about 20 % of the total intake, however, the potential effect and the mechanism of nanoceria on bone metabolism are not well-understood. Our results showed that both 25 and 50 nm nanceria decreased the damage of cell viability induced by H2O2 in a dose-dependent manner. The apoptosis ratio of pre-incubated group with nanoceria was lower than the H2O2 group. The cellular uptake studies indicated that there was a dose-dependent accumulation of both two size nanoparticles in bone marrow stromal cells. Nanoceria could be uptaken by cells due to the synergistic effect of multiple endocytosis mechanisms, and then evenly distributed in the cytoplasm without entering the nucleus. Our results suggest that nanoceria could reduce intracellular ROS level induced by H2O2 in a dose-dependent manner, moreover, maintain the normal function of mitochondria, suggesting nanoceria may have potent applications for preventing or treating osteoporosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Amin KA, Hassan MS, Awad el ST, Hashemel KS (2011) The protective effects of cerium oxide nanoparticles against hepatic oxidative damage induced by monocrotaline. Int J Nanomed 6:143–149

    Article  Google Scholar 

  • Bai XC, Lu D, Bai J, Zheng H, Ke ZY, Li XM, Luo SQ (2004) Oxidative stress inhibits osteoblastic differentiation of bone cells by ERK and NF-kappaB. Biochem Biophys Res Commun 314:197–207

    Article  Google Scholar 

  • Chen Q, Takeyama N, Brady G, Watson AJ, Dive C (1998) Blood cells with reduced mitochondrial membrane potential and cytosolic cytochrome c can survive and maintain clonogenity given appropriate signals to suppress apoptosis. Blood 92:4545–4553

    Google Scholar 

  • Chen J, Patil S, Seal S, McGinnis JF (2006) Rare earth nanoparticles prevent retinal degeneration induced by intracellular peroxides. Nat Nanotechnol 1:142–150

    Article  Google Scholar 

  • Colon J, Herrera L, Smith J, Patil S, Komanski C, Kupelian P, Seal S, Jenkins DW, Baker CH (2009) Protection from radiation-induced pneumonitis using cerium oxide nanoparticles. Nanomed Nanotechnol Biol Med 5:225–231

  • Corma A, Atienzar P, García H, Chane-Ching JY (2004) Hierarchically mesostructured doped cerium oxide with potential for solar-cell use. Nat Mater 3:394–397

    Article  Google Scholar 

  • Das M, Patil S, Bhargava N, Kang JF, Riedel LM, Seal S, Hickman JJ (2007) Auto-catalytic ceria nanoparticles offer neuroprotection to adult rat spinal cord neurons. Biomaterials 28:1918–1925

    Article  Google Scholar 

  • Dong XT, Hong GY, Yu DC, Yu DS (1997) Synthesis and properties of cerium oxide nanometer powder by pyrolysis of amorphous citrate. J Mater Sci Technol 13:113–116

    Google Scholar 

  • Estevez AY, Pritchard S, Harper K, Aston JW, Lynch A, Lucky JJ, Ludington JS, Chatani P, Mosenthal WP, Leiter JC, Andreescu S, Erlichman JS (2011) Neuroprotective mechanisms of cerium oxide nanoparticles in a mouse hippocampal brain slice model of ischemia. Free Radic Biol Med 51:1155–1163

    Article  Google Scholar 

  • Greulich C, Diendorf J, Simon T, Eggeler G, Epple M, Köller M (2011) Uptake and intracellular distribution of silver nanoparticles in human mesenchymal stem cells. Acta Biomater 7:347–354

    Article  Google Scholar 

  • Heckert EG, Karakoti AS, Seal S, Self WT (2008) The role of cerium redox state in the SOD mimetic activity of nanoceria. Biomaterials 29:2705–2709

    Article  Google Scholar 

  • Hirst SM, Karakoti AS, Tyler RD, Sriranganathan N, Seal S, Reilly CM (2009) Anti-inflammatory properties of cerium oxide nanoparticles. Small 5:2848–2856

    Article  Google Scholar 

  • Horie M, Nishio K, Fujita K, Endoh S, Miyauchi A, Saito Y, Iwahashi H, Yamamoto K, Murayama H, Nakano H, Nanashima N, Niki E, Yoshida Y (2009) Protein adsorption of ultrafine metal oxide and its influence on cytotoxicity toward cultured cells. Chem Res Toxicol 22:543–553

    Article  Google Scholar 

  • Karakoti A, Hench LL, Seal S (2006) The potential toxicity of nanomaterials-The role of surfaces. JOM 58:77–82

    Article  Google Scholar 

  • Karakoti A, Singh S, Dowding JM, Seal S, Self WT (2010) Redox-active radical scavenging nanomaterials. Chem Soc Rev 39:4422–4432

    Article  Google Scholar 

  • Korsvik C, Patil S, Seal S, Self WT (2007) Superoxide dismutase mimetic properties exhibited by vacancy engineered ceria nanoparticles. Chem Commun 14:1056–1058

    Article  Google Scholar 

  • Li XD, Wang JS, Chang B, Chen B, Guo C, Hou GQ, Huang DY, Du SX (2011) Contents lists available at sciencedirect journal of ethnopharmacology panax notoginseng saponins promotes proliferation and osteogenic differentiation of rat bone marrow stromal cells. J Ethnopharmacol 134:268–274

    Article  Google Scholar 

  • Lin W, Huang YW, Zhou XD, Ma Y (2006) Toxicity of cerium oxide nanoparticles in human lung cancer cells. Int J Toxicol 25:451–457

    Article  Google Scholar 

  • Liu AL, Zhang ZM, Zhu BF, Liao ZH, Liu Z (2004) Metallothionein protects bone marrow stromal cells against hydrogen peroxide-induced inhibition of osteoblastic differentiation. Cell Biol Int 28:905–911

    Article  Google Scholar 

  • Liu Y, Jiao F, Qiu Y, Li W, Lao F, Zhou G, Sun B, Xing G, Dong J, Zhao Y, Chai Z, Chen C (2009) The effect of Gd@C82(OH)22 nanoparticles on the release of Th1/Th2cytokines and induction of TNF-a mediated cellular immunity. Biomaterials 30:3934–3945

    Article  Google Scholar 

  • Lord MS, Jung M, Teoh WY, Gunawan C, Vassie JA, Amal R, Whitelock JM (2012) Cellular uptake and reactive oxygen species modulation of cerium oxide nanoparticles in human monocyte cell line U937. Biomaterials 33:7915–7924

    Article  Google Scholar 

  • Mancini M, Anderson BO, Caldwell E, Sedghinasab M, Paty PB, Hockenbery DM (1997) Mitochondrial proliferation and paradoxical membrane depolarization during terminal differentiation and apoptosis in a human colon carcinoma cell line. J Cell Biol 138:449–469

    Article  Google Scholar 

  • Martinou I, Desagher S, Eskes R, Antonsson B, André E, Fakan S, Martinou JC (1999) The release of cytochrome c from mitochondria during apoptosis of NGF-deprived sympathetic neurons is a reversible event. J Cell Biol 144:883–889

    Article  Google Scholar 

  • Matés JM, Sánchez-Jiménez FM (2000) Role of reactive oxygen species in apoptosis: implications for cancer therapy. Int J Biochem Cell Biol 32:157–170

    Article  Google Scholar 

  • Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  Google Scholar 

  • Ozgocmen S, Kaya H, Fadillioglu E, Aydogan R, Yilmaz Z (2007) Role of antioxidant systems, lipid peroxidation and nitric oxide in postmenopausal osteoporosis. Mol Cell Biochem 295:45–52

    Article  Google Scholar 

  • Pagliari F, Mandoli C, Forte G, Magnani E, Pagliari S, Nardone G, Licoccia S, Minieri M, Di Nardo P, Traversa E (2012) Cerium oxide nanoparticles protect cardiac progenitor cells from oxidative stress francesca pagliari. ACS Nano 6:3767–3775

    Article  Google Scholar 

  • Ray G, Husain SA (2002) Oxidants, antioxidants and carcinogenesis. Indian J Exp Bio 40:1213–1232

    Google Scholar 

  • Robert AY, Tu CA, Robert MP (2012) Distribution, elimination, and biopersistence to 90 days of a systemically introduced 30 nm ceria-engineered nanomaterial in rats. Toxicol Sci 127:256–268

    Article  Google Scholar 

  • Sánchez-Rodríguez MA, Ruiz-Ramos M, Correa-Muñoz E, Mendoza-Núñez VM (2007) Oxidative stress as a risk factor for osteoporosis in elderly Mexicans as characterised by antioxidant enzymes. BMC Musculoskelet Disord 8:124–130

    Article  Google Scholar 

  • Schubert D, Dargusch R, Raitano J, Chan SW (2006) Cerium and yttrium oxide nanoparticles are neuroprotective. Biochem Biophys Res Commun 342:86–91

    Article  Google Scholar 

  • Singh S, Kumar A, Karakoti A, Seal S, Self WT (2010) Unveiling the mechanism of uptake and sub-cellular distribution of cerium oxide nanoparticles. Mol BioSyst 6:1813–1820

    Article  Google Scholar 

  • Tarnuzzer RW, Colon J, Patil S, Seal S (2005) Vacancy engineered ceria nanostructures for protection from radiation-induced cellular damage. Nano Lett 5:2573–2577

    Article  Google Scholar 

  • van Engeland M, Nieland LJ, Ramaekers FC, Schutte B, Reutelingsperger CP (1998) Annexin V-affinity assay: a review on an apoptosis detection system based on phosphatidylserine exposure. Cytometry 31:1–9

    Article  Google Scholar 

  • Vander Heiden MG, Chandel NS, Williamson EK, Schumacker PT, Thompson CB (1997) Bcl-xL regulates the membrane potential and volume homeostasis of mitochondria. Cell 91:627–637

    Article  Google Scholar 

  • Verma S, Rajaratnam JH, Denton J, Hoyland JA, Byers RJ (2002) Adipoctyic proportion of bone marrow is inversely related to bone formation in osteoporosis. J Clin Pathol 55:693–698

    Article  Google Scholar 

  • Wauquier F, Leotoing L, Coxam V, Guicheux J, Wittrant Y (2009) Oxidative stress in bone remodelling and disease. Trends Mol Med 15:468–477

    Article  Google Scholar 

  • Xia T, Kovochich M, Liong M, Mädler L, Gilbert B, Shi H, Yeh JI, Zink JI, Nel AE (2008) Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2:2121–2134

    Article  Google Scholar 

  • Yalin S, Bagis S, Polat G, Dogruer N, Cenk Aksit S, Hatungil R, Erdogan C (2005) Is there a role of free oxygen radicals in primary male osteoporosis? Clin Exp Rheumatol 23:689–692

    Google Scholar 

  • Zhai YQ, Zhang SY, Pang H (2007) Preparation, characterization and photocatalytic activity of cerium oxide nanocrystalline using ammonium bicarbonate as precipitan. Mater Lett 61:1863–1866

    Article  Google Scholar 

  • Zhao WH, Gou BD, Zhang TL, Wang K (2012) Lanthanum chloride bidirectionally influences calcification in bovine vascular smooth muscle cells. J Cell Biochem 113:1776–1786

    Google Scholar 

  • Zhuang J, Dinsdale D, Cohen GM (1998) Apoptosis, in human monocytic THP.1 cells, results in the release of cytochrome c from mitochondria prior to their ultracondensation, formation of outer membrane discontinuities and reduction in inner membrane potential. Cell Death Differ 5:953–962

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Chinese Natural Science Foundation project (No. 21271059) and Research Fund for the Doctoral Program of Higher Education of China (No. 20111301110004), Hebei Province “Hundred Talents Program” (BR2–202), Training Program for Innovative Research Team, and Leading Talent in Hebei Province University (LJRC024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinchao Zhang.

Additional information

Qun Zhang, Kun Ge contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Ge, K., Duan, J. et al. Cerium oxide nanoparticles protect primary mouse bone marrow stromal cells from apoptosis induced by oxidative stress. J Nanopart Res 16, 2697 (2014). https://doi.org/10.1007/s11051-014-2697-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-014-2697-3

Keywords

Navigation