Skip to main content
Log in

Surface tension, viscosity, and rheology of water-based nanofluids: a microscopic interpretation on the molecular level

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Nanofluids are suspensions of nanometer-sized particles which significantly modify the properties of the base fluids. Nanofluids exhibit attractive properties, such as high thermal conductivity, tunable surface tension, viscosity, and rheology. Various attempts have been made to understand the mechanisms for these property modifications caused by adding nanoparticles; however, due to the lack of direct nanoscale evidence, these explanations are still controversial. This work calculated the surface tension, viscosity, and rheology of gold–water nanofluids using molecular dynamics simulations which provide a microscopic interpretation for the modified properties on the molecular level. The gold–water interaction potential parameters were changed to mimic various nanoparticle types. The results show that the nanoparticle wettability is responsible for the modified surface tension. Hydrophobic nanoparticles always tend to stay on the free surface so they behave like a surfactant to reduce the surface tension. Hydrophilic nanoparticles immersed into the bulk fluid impose strong attractive forces on the water molecules at the free surface which reduces the free surface thickness and increases the surface tension of the nanofluid. Solid-like absorbed water layers were observed around the nanoparticles which increase the equivalent nanoparticle radius and reduce the mobility of the nanoparticles within the base fluid which increases the nanofluid viscosity. The results show the water molecule solidification between two or many nanoparticles at high nanoparticle loadings, but the solidification effect is suppressed for shear rates greater than a critical shear rate; thus Newtonian nanofluids can present shear-thinning non-Newtonian behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abareshi M, Sajjadi SH, Zebarjad SM, Goharshadi EK (2011) Fabrication, characterization, and measurement of viscosity of α-Fe2O3–glycerol nanofluids. J Mol Liquids 163(1):27–32

    Article  Google Scholar 

  • Batchelor GK (1977) The effect of Brownian motion on the bulk stress in a suspension of spherical particles. J Fluid Mech 83(1):97–117

    Article  Google Scholar 

  • Branson BT, Beauchamp PS, Beam JC, Lukehart CM, Davidson JL (2013) Nanodiamond nanofluids for enhanced thermal conductivity. ACS Nano 7(4):3183–3189

    Article  Google Scholar 

  • Carré A, Woehl P (2006) Spreading of silicone oils on glass in two geometries. Langmuir 22(1):134–139

    Article  Google Scholar 

  • Chakraborty S, Padhy S (2008) Anomalous electrical conductivity of nanoscale colloidal suspensions. ACS Nano 2(10):2029–2036

    Article  Google Scholar 

  • Chandrasekar M, Suresh S, Chandra BA (2010) Experimental investigations and theoretical determination of thermal conductivity and viscosity of Al2O3/water nanofluids. Exp Therm Fluid Sci 34(2):210–216

    Article  Google Scholar 

  • Chen HS, Ding YL, He YR, Tan CQ (2007a) Rheological behaviour of ethylene glycol based titania nanofluids. Chem Phys Lett 444(4–6):333–337

    Article  Google Scholar 

  • Chen HS, Ding YL, Tan CQ (2007b) Rheological behaviour of nanofluids. New J Phys 9:367

    Article  Google Scholar 

  • Chen HS, Ding YL, Lapkin A (2009) Rheological behaviour of nanofluids containing tube rod-like nanoparticles. Powder Technol 194(1–2):132–141

    Article  Google Scholar 

  • Chen T, Chidambaram M, Liu ZP, Smit B, Bell AT (2010) Viscosities of the mixtures of 1-ethyl-3-methylimidazolium chloride with water, acetonitrile and glucose: a molecular dynamics simulation and experimental study. J Phys Chem B 114(17):5790–5794

    Article  Google Scholar 

  • Chen RH, Phuoc TX, Martello D (2011) Surface tension of evaporating nanofluid droplets. Int J Heat Mass Transf 54:2459–2466

    Article  Google Scholar 

  • Cheng LS, Cao DP (2011) Designing a thermo-switchable channel for nanofluidic controllable transportation. ACS Nano 5(2):1102–1108

    Article  Google Scholar 

  • Choi SUS (1995) Enhancing thermal conductivity of fluids with nanoparticles. In: Siginer DA, Wang HP (eds) Developments and application of non-Newtonian flows, FED 231/MD, vol 66. ASME, New York, pp 99–105

  • Choi SUS (2009) Nanofluids: from vision to reality through research. J Heat Transf 131(3): 033106-1–033106-9

  • Cui WZ, Bai ML, Lv JZ (2011) On the influencing factors and strengthening mechanism for thermal conductivity of nanofluids by molecular dynamics simulation. Ind Eng Chem Res 50(23):13568–13575

    Article  Google Scholar 

  • D’Auria R, Tobias DJ (2009) On the relation between surface tension and ion adsorption at the air–water interface: a molecular dynamics simulation study. J Phys Chem A 113(26):7286–7293

    Article  Google Scholar 

  • Das SK, Putra N, Reotzel W (2003) Pool boiling characteristics of nano-fluids. Int J Heat Mass Transf 46:851–862

    Article  Google Scholar 

  • Daw DS, Foiles SM, Baskes MI (1993) The embedded atom method: a review of theory and applications. Mater Sci Rep 9(7–8):251–310

    Article  Google Scholar 

  • Ding Y, Alias H, Wen D, Williams AR (2006) Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids). Int J Heat Mass Transf 49(1):240–250

    Article  Google Scholar 

  • Eastman JA, Phillpot SR, Choi SUS, Keblinski P (2004) Thermal transport in nanofluids. Annu Rev Mater Res 34:219–246

    Article  Google Scholar 

  • Einstein A (1905) Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann Phys 322:549–560

    Article  Google Scholar 

  • Einstein A (1956) Investigations on the theory of Brownian movement. Dover, New York

    Google Scholar 

  • Ge S, Zhang XX, Chen M (2011) Viscosity of NaCl aqueous solution under supercritical conditions: a molecular dynamics simulation. J Chem Eng Data 56(4):1299–1304

    Article  Google Scholar 

  • Gittens GJ (1969) Variation of surface tension of water with temperature. J Colloid Interface Sci 30(3):406–412

    Article  Google Scholar 

  • He Y, Jin Y, Chen HS, Ding Y, Cang D, Lu H (2007) Heat transfer and flow behaviour of aqueous suspensions of TiO2 nanoparticles (nanofluids) flowing upward through a vertical pipe. Int J Heat Mass Transf 50(11–12):2272–2281

    Article  Google Scholar 

  • Hilsenrath J (1995) US National Bureau of Standards Circuits No. 564

  • Horn HW, Swope WC, Pitera JW, Madura JD, Dick TJ, Hura GL, Head-Gordon T (2004) Development of an improved four-site water model for biomolecular simulations: tIP4P-Ew. J Chem Phys 120(20):9665–9677

    Article  Google Scholar 

  • Hosseini SM, Moghadassi AR, Henneke DE (2010) A new dimensionless group model for determining the viscosity of nanofluids. J Therm Anal Calorim 100:873–877

    Article  Google Scholar 

  • Hou HY, Chen GL, Chen G (2009) A molecular dynamics simulation on surface tension of liquid Ni and Cu. Comput Mater Sci 46(1):516–519

    Article  Google Scholar 

  • Ismail AE, Grest GS, Stevens MJ (2006) Capillary waves at the liquid–vapor interface and surface tension of water models. J Chem Phys 125(1):014702

    Article  Google Scholar 

  • Keblinski P, Eastman JA, Cahill DG (2005) Nanofluids for thermal transport. Mater Today 8(6):36–44

    Article  Google Scholar 

  • Kim S, Kim C, Lee WH, Park SR (2011) Rheological properties of alumina nanofluids and their implication to the heat transfer enhancement mechanism. J Appl Phys 110(3):34316

    Article  Google Scholar 

  • Kole M, Dey TK (2011) Effect of aggregation on the viscosity of copper oxide–gear oil nanofluids. Int J Therm Sci 50(9):1741–1747

    Article  Google Scholar 

  • Krieger IM, Dougherty TJ (1959) A mechanism for non-Newtonian flow in suspension of rigid spheres. Trans Soc Rheol 3:137–152

    Article  Google Scholar 

  • Kumar R, Milanova D (2009) Effect of surface tension on nanotube nanofluids. Appl Phys Lett 94:073107

    Article  Google Scholar 

  • Kumar P, Varanasi SR, Yashonath S (2013) Relation between the diffusivity, viscosity, and ionic radius of LiCl in water, methanol, and ethylene glycol: a molecular dynamics simulation. J Phys Chem B 117(27):8196–8208

    Article  Google Scholar 

  • Lee JH, Hwang KS, Janga S, Lee BH, Kim JH, Choi SUS, Choi CJ (2008) Effective viscosities and thermal conductivities of aqueous nanofluids containing low volume concentrations of Al2O3 nanoparticles. Int J Heat Mass Transf 51(11–12):2651–2656

    Article  Google Scholar 

  • Li L, Zhang YW, Ma HB, Yang M (2008) An investigation of molecular layering at the liquid-solid interface in nanofluids by molecular dynamics simulation. Phys Lett A 372(25):4541–4544

    Article  Google Scholar 

  • Li YJ, Zhou JE, Tung S, Schneider E, Xi SQ (2009) A review on development of nanofluid preparation and characterization. Powder Technol 196:89–101

    Article  Google Scholar 

  • Li L, Zhang YW, Ma HB, Yang M (2010) Molecular dynamics simulation of effect of liquid layering around the nanoparticle on the enhanced thermal conductivity of nanofluids. J Nanopart Res 12(3):811–821

    Article  Google Scholar 

  • Li X, Hede T, Tu Y (2011) Glycine in aerosol water droplets: a critical assessment of Köhler theory by predicting surface tension from molecular dynamics simulations. Atmos Chem Phys 11:519–527

    Article  Google Scholar 

  • Liu Y, Kai D (2012) Investigations of surface tension of binary nanofluids. Adv Mater Res 347–353:786–790

    Google Scholar 

  • Mahbubul IM, Saidur R, Amalina MA (2012) Latest developments on the viscosity of nanofluids. Int J Heat Mass Transf 55(4):874–885

    Article  Google Scholar 

  • Masoumi N, Sohrabi N, Behzadmehr A (2009) A new model for calculating the effective viscosity of nanofluids. J Phys D Appl Phys 42:055501

    Article  Google Scholar 

  • Medina JS, Prosmiti R, Villarreal P (2011) Molecular dynamics simulations of rigid and flexible water models: temperature dependence of viscosities. Chem Phys 388(1–3):9–18

    Article  Google Scholar 

  • Michaelides EE (2013) Transport properties of nanofluids. A critical review. J Non-Equilib Thermodyn 38(1):1–79

    Article  Google Scholar 

  • Mohebbi A (2012) Prediction of specific heat and thermal conductivity of nanofluids by a combined equilibrium and non-equilibrium molecular dynamics simulation. J Mol Liquids 175:51–58

    Article  Google Scholar 

  • Moosavi M, Goharshadi EK, Youssefi A (2010) Fabrication, characterization, and measurement of some physicochemical properties of ZnO nanofluids. Int J Heat Mass Transf 31(4):599–605

    Google Scholar 

  • Mountain RD (2009) An internally consistent method for the molecular dynamics simulation of the surface tension: application to some tip4p-type models of water. J Phys Chem B 113(2):482–486

    Article  Google Scholar 

  • Muller-Plathe F (1999) Reversing the perturbation in nonequilibrium molecular dynamics: an easy way to calculate the shear viscosity of fluids. Phys Rev E 59(5):4894–4898

    Article  Google Scholar 

  • Murshed SMS, Leoong KC, Yang C (2008a) Thermophysical and electrokinetic properties of nanofluids—a critical review. Appl Therm Eng 28(17–18):2109–2125

    Article  Google Scholar 

  • Murshed SMS, Leong KC, Yang C (2008b) Investigations of thermal conductivity and viscosity of nanofluids. Int J Therm Sci 47(5):560–568

    Article  Google Scholar 

  • Murshed SMS, Tan SH, Nguyen NT (2008c) Temperature dependence of interfacial properties and viscosity of nanofluids for droplet-based microfluidics. J Phys D Appl Phys 41(8):085502

    Article  Google Scholar 

  • Nguyen CT, Desgranges F, Galanis N, Roy G, Maré T, Boucher S, Mintsa HA (2008) Viscosity data for Al2O3–water nanofluid-hysteresis: is heat transfer enhancement using nanofluids reliable. Int J Therm Sci 47(2):103–111

    Article  Google Scholar 

  • Nielsen LE (1970) Generalized equation for the elastic moduli of composite materials. J Appl Phys 41(11):4626–4627

    Article  Google Scholar 

  • Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117(1):1–19

    Article  Google Scholar 

  • Prasher R, Song D, Wang J, Phelan PE (2006) Measurements of nanofluid viscosity and its implications for thermal applications. Appl Phys Lett 89:133108-1–133108-3

    Google Scholar 

  • Radiom M, Yang C, Chan WK (2010) Characterization of surface tension and contact angle of nanofluids. Proc SPIE 7522:75221D

    Article  Google Scholar 

  • Rutkevych PP, Ramanarayan H, Wu DT (2010) Optimizing the computational efficiency of surface tension estimates in molecular dynamics simulations. Comput Mater Sci 49(1):s95–s98

    Article  Google Scholar 

  • Ryckaert JP, Ciccotti G, Berendsen HJC (1977) Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23(3):327–341

    Article  Google Scholar 

  • Sarkara S, Selvam SP (2007) Molecular dynamics simulation of effective thermal conductivity and study of enhanced thermal transport mechanism in nanofluids. J Appl Phys 102(2):074302

    Article  Google Scholar 

  • Shi B, Sinha S, Dhir VK (2006) Molecular dynamics simulation of the density and surface tension of water by particle–particle particle–mesh method. J Chem Phys 124(20):204715

    Article  Google Scholar 

  • Sunda AP, Venkatnathan A (2013) Parametric dependence on shear viscosity of SPC/E water from equilibrium and non-equilibrium molecular dynamics simulations. Mol Simul 39(9):728–733

    Article  Google Scholar 

  • Susan-Resiga D, Socoliuc V, Boros T, Borbath T, Marinica O, Han A, Vekas L (2012) The influence of particle clustering on the rheological properties of highly concentrated magnetic nanofluids. J Colloid Interface Sci 373(1):110–115

    Article  Google Scholar 

  • Tanvir S, Li Q (2012) Surface tension of nanofluid-type fuels containing suspended nanomaterials. Nanoscale Res Lett 7:226–236

    Article  Google Scholar 

  • Teng KL, Hsiao PY, Hung SW, Chieng CC, Liu MS, Lu MC (2008) Enhanced thermal conductivity of nanofluids diagnosis by molecular dynamics simulations. J Nanosci Nanotechnol 8(7):3710–3718

    Google Scholar 

  • Thomas JC, Rowley RL (2011) Transient molecular dynamics simulations of liquid viscosity for nonpolar and polar fluids. J Chem Phys 134(2):024526

    Article  Google Scholar 

  • Trisaksri V, Wongwises S (2007) Critical review of heat transfer characteristics of nanofluids. Renew Sustain Energy Rev 11(3):512–523

    Article  Google Scholar 

  • Vafaei S, Purkayastha A, Jain A (2009) The effect of nanoparticles on the liquid-gas surface tension of Bi2Te3 nanofluids. Nanotechnology 20(18):185702

    Article  Google Scholar 

  • Wang XW, Xu XF, Choi SUS (1999) Thermal conductivity of nanoparticle–fluid mixture. J Therm Heat Transf 13(4):474–480

    Article  Google Scholar 

  • Wu S, Nikolov A, Wasan D (2013) Cleansing dynamics of oily soil using nanofluids. J Colloid Interface Sci 396:293–306

    Article  Google Scholar 

  • Yu W, Xie H, Li Y, Chen L (2001) Experimental investigation on thermal conductivity and viscosity of aluminum nitride nanofluid. Particuology 9(2):187–191

    Article  Google Scholar 

  • Yu W, Xie H, Chen L, Li Y (2009) Investigation of thermal conductivity and viscosity of ethylene glycol based ZnO nanofluids. Thermochim Acta 491(1–2):92–96

    Article  Google Scholar 

  • Zhu RZ, Yang H (2011) A new method for the determination of surface tension from molecular dynamics simulations applied to liquid droplets. Chin Phys B 20(1):016801

    Article  Google Scholar 

  • Zhu D, Wu S, Wang N (2010) Thermal physics and critical heat flux characteristics of Al2O3-H2O nanofluids. Heat Transf Eng 31:1213–1219

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support from the National Natural Science Foundation of China (Nos. 21176133,51276060 and 51321002). The calculations were completed on the “Explorer 100” cluster system of the Tsinghua National Laboratory for Information Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan-Yuan Duan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, G., Duan, YY. & Wang, XD. Surface tension, viscosity, and rheology of water-based nanofluids: a microscopic interpretation on the molecular level. J Nanopart Res 16, 2564 (2014). https://doi.org/10.1007/s11051-014-2564-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-014-2564-2

Keywords

Navigation