Skip to main content
Log in

A new dimensionless group model for determining the viscosity of nanofluids

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This article presents a model, based on dimensionless groups, to predict the viscosity of nanoparticle suspensions, nanofluids. This empirical model expresses the viscosity of a nanofluid as a function of the following: viscosity of the base liquid, particle volume fraction, particle size, properties of the surfactant layer, and temperature. According to this model, viscosity changes nonlinearly with nanoparticle loading. Compared to other models, the new model is in good agreement with experimentally determined viscosity data for alumina–water nanofluids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bergles AE. Recent development in convective heat transfer augmentation. Appl Mech Rev. 1973;26:675–82.

    Google Scholar 

  2. Ahuja AS. Augmentation of heat transport in laminar flow of polystyrene suspension: I. Experimental and results. Appl Phys. 1975;46(8):3408–16.

    Article  CAS  Google Scholar 

  3. Ahuja AS. Thermal design of a heat exchanger employing laminar flow of particle suspensions. Heat Mass Transf. 1982;25:725–8.

    Article  CAS  Google Scholar 

  4. Sohn CW, Chen MM. Microconvective thermal conductivity in disperse two-phase mixtures as observed in a low velocity Couette flow experiment. Heat Transf. 1981;103:45–51.

    Google Scholar 

  5. Boothroyd RG, Haque H. Fully developed heat transfer to a gaseous suspension of particles flowing turbulently in duct of different size. J Mech Eng Sci. 1970;12(3):191–200.

    Article  Google Scholar 

  6. Kurosaki Y, Murasaki T. Study on heat transfer mechanism of a gas–solid suspension impinging jet (effect of particle size and thermal properties), Proceedings of the 8th international heat transfer conference, vol. 5. 1986. p. 2587–92.

  7. Zhou DW. Heat transfer enhancement of copper nanofluid with acoustic cavitation. Heat Mass Transf. 2004;47:3109–17.

    Article  CAS  Google Scholar 

  8. Patel HE, Das SK, Sundararajan T, Nair AS, George B, Pradeep T. Thermal conductivities of naked and monolayer protected metal nanoparticle based nanofluids: manifestation of anomalous enhancement and chemical effects. Appl Phys Lett. 2003;83:2931–33.

    Article  CAS  Google Scholar 

  9. Lee S, Choi SUS, Li S, Eastman JA. Measuring thermal conductivity of fluids containing oxide nanoparticles. ASME J Heat Transf. 1999;121:280–89.

    Article  CAS  Google Scholar 

  10. Beck MP, Sun T, Teja AS. The thermal conductivity of alumina nanoparticles dispersed in ethylene glycol. Fluid Phase Equilib. 2007;260:275–8.

    Article  CAS  Google Scholar 

  11. Oh DW, Jain A, Eaton JK, Goodson KE, Lee JS. Thermal conductivity measurement and sedimentation detection of aluminum oxide nanofluids by using the 3x method. Int J Heat Fluid Flow. 2008;29(5):1456–68.

    Article  CAS  Google Scholar 

  12. Murshed SMS, Leong KC, Yang C. Enhanced thermal conductivity of TiO2—water based nanofluids. Therm Sci. 2005;44:367–73.

    Article  CAS  Google Scholar 

  13. Liu MS, Lin MC, Huang I, Wang C. Enhancement of thermal conductivity with carbon nanotube for nanofluids. Heat Mass Transf. 2005;32:1202–10.

    Article  CAS  Google Scholar 

  14. Das SK, Putra N, Roetzel W. Pool boiling characteristics of nanofluids. Heat Mass Transf. 2003;46:851–62.

    Article  CAS  Google Scholar 

  15. Masuda H, Ebata A, Teramae K, Hishinuma N. Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles (dispersion of γ -Al2O3, SiO2 and TiO2 ultra-fine particles). Netsu Bussei. 1993;4(4):227–33 (in Japanese).

    Google Scholar 

  16. Pak PC, Cho YI. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Transf. 1998;11(2):151–170.

    Article  CAS  Google Scholar 

  17. Putra N, Roetzel W, Das SK. Natural convection of nanofluids. Heat Mass Transf. 2003;39:775–84.

    Article  Google Scholar 

  18. Maré T, Schmitt AG, Nguyen CT, Miriel J, Roy G. Experimental heat transfer and viscosity study of nanofluids: water–γ Al2O3. Proceedings of 2nd international conference on thermal engineering. Theory and applications, paper no. 93, January 3–6, Al Ain, United Arab Emirates; 2006.

  19. Buschow KHJ, editor. Handbook of magnetic materials, vol. 16. Amsterdam: Elsevier; 2006.

  20. Reed JS. Introduction to principles of ceramic processing. New York: John Wiley & Sons Inc; 1995.

    Google Scholar 

  21. Brinkman HC. The viscosity of concentrated suspensions and solution. J Chem Phys. 1952;20:571–81.

    Article  CAS  Google Scholar 

  22. Batchelor GK. The effect of Brownian motion on the bulk stress in a suspension of spherical particles. J Fluid Mech. 1977;83(1):97–117.

    Article  Google Scholar 

  23. Nguyen CT, Desgranges F, Galanis N, Roy G, Maré T, Boucher S, et al. Viscosity data for Al2O3–water nanofluid—hysteresis: is heat transfer enhancement using nanofluids reliable. Therm Sci. 2008;47:103–111.

    Article  CAS  Google Scholar 

  24. Bellamine NFH, Elkamel A. Numerical Characterization of distributed dynamic systems using tools of intelligent computing and generalized dimensional analysis. J Appl Math Comput. 2006;182:1021–39.

    Article  Google Scholar 

  25. Moghadassi AR, Masoud Hosseini S, Henneke D, Elkamel A. A model of nanofluids effective thermal conductivity based on dimensionless groups. J Therm Anal Calorim. 2009;96(1):81–4.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Masoud Hosseini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Masoud Hosseini, S., Moghadassi, A.R. & Henneke, D.E. A new dimensionless group model for determining the viscosity of nanofluids. J Therm Anal Calorim 100, 873–877 (2010). https://doi.org/10.1007/s10973-010-0721-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-010-0721-0

Keywords

Navigation