Skip to main content

Advertisement

Log in

Release of engineered nanomaterials from personal care products throughout their life cycle

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The impetus for this study was to provide release estimates that can serve to improve predictions of engineered nanomaterial (ENM) exposure for risk assessment. We determined the likely release of ENMs from personal care products (PCPs) through a consumer survey on use and disposal habits, and research on the types and quantities of ENMs in PCPs. Our estimates show that in the US zinc oxide (ZnO), with 1,800–2,100 mt yr−1, and titanium dioxide (TiO2), with 870–1,000 mt yr−1, represent 94 % of ENMs released into the environment or landfills from the use of PCPs. Around 36–43 % of ENMs from PCPs were estimated to end up in landfills, 24–36 % released to soils, 0.7–0.8 % to air, and 28–32 % to water bodies. ENMs in sunscreen represent around 81–82 % of total release, from ZnO and TiO2 as UV blockers, followed by facial moisturizer (7.5 %), foundation (5.7 %), and hair coloring products (3.1 %). Daily care products such as body wash, shampoo, and conditioner had by far the highest per capita and total use, but contributed little to the ENM release estimates as these products generally contain little or no ENMs. However, if ENMs are incorporated into these daily care products, this may substantially increase ENM release.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bangale MS, Mitkare S, Gattani SG, Sakarkar DM (2012) Recent nanotechnological aspects in cosmetics and dermatological applications. Int J Pharm Pharm Sci 4:88–97

    Google Scholar 

  • Benn TM, Westerhoff P (2008) Nanoparticle silver released into water from commercially available sock fabrics. Environ Sci Technol 42:4133–4139

    Article  Google Scholar 

  • Benn T, Cavanagh B, Hristovski K et al (2010) The release of nanosilver from consumer products used in the home. J Environ Qual 39:1875. doi:10.2134/jeq2009.0363

    Article  Google Scholar 

  • Benn TM, Westerhoff P, Herckes P (2011) Detection of fullerenes (C60 and C70) in commercial cosmetics. Environ Pollut 159:1334–1342

    Article  Google Scholar 

  • Bian S-W, Mudunkotuwa IA, Rupasinghe T, Grassian VH (2011) Aggregation and dissolution of 4 nm ZnO nanoparticles in aqueous environments: influence of pH, ionic strength, size, and adsorption of humic acid. Langmuir 27:6059–6068. doi:10.1021/la200570n

    Article  Google Scholar 

  • Biesterbos JWH, Dudzina T, Delmaar CJE et al (2013) Usage patterns of personal care products: important factors for exposure assessment. Food Chem Toxicol 55:8–17

    Article  Google Scholar 

  • Boxall ABA, Chaudhry Q, Sinclair C et al (2007) Current and future predicted environmental exposure to engineered nanoparticles. York, UK

    Google Scholar 

  • Brar SK, Verma M, Tyagi RD, Surampalli RY (2010) Engineered nanoparticles in wastewater and wastewater sludge—evidence and impacts. Waste Manag 30:504–520. doi:10.1016/j.wasman.2009.10.012

    Article  Google Scholar 

  • Danovaro R, Bongiorni L, Corinaldesi C et al (2008) Sunscreens cause coral bleaching by promoting viral infections. Environ Health Perspect 116:441–447. doi:10.1289/ehp.10966

    Google Scholar 

  • Fairbairn EA, Keller AA, Mädler L et al (2011) Metal oxide nanomaterials in seawater: linking physicochemical characteristics with biological response in sea urchin development. J Hazard Mater 192:1565–1571. doi:10.1016/j.jhazmat.2011.06.080

    Article  Google Scholar 

  • Future Markets (2012) Nanomaterials in the Cosmetics and Personal Care Industry, p 36. http://www.researchandmarkets.com/reports/2069662/nanomaterials_in_the_cosmetics_and_personal_care

  • Gottschalk F, Nowack B (2011) The release of engineered nanomaterials to the environment. J Environ Monit 13:1145–1155

    Article  Google Scholar 

  • Gottschalk F, Sonderer T, Scholz RW, Nowack B (2009) Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, Fullerenes) for different regions. Environ Sci Technol 43:9216–9222. doi:10.1021/es9015553

    Article  Google Scholar 

  • Gottschalk F, Scholz RW, Nowack B (2010) Probabilistic material flow modeling for assessing the environmental exposure to compounds: methodology and an application to engineered nano-TiO2 particles. Environ Model Softw 25:320–332. doi:10.1016/j.envsoft.2009.08.011

    Article  Google Scholar 

  • Gottschalk F, Sun T, Nowack B (2013) Environmental concentrations of engineered nanomaterials: review of modeling and analytical studies. Environ Pollut 181:287–300. doi:10.1016/j.envpol.2013.06.003

    Article  Google Scholar 

  • Hall B, Tozer S, Safford B et al (2007) European consumer exposure to cosmetic products, a framework for conducting population exposure assessments. Food Chem Toxicol 45:2097–2108

    Article  Google Scholar 

  • Hall B, Steiling W, Safford B et al (2011) European consumer exposure to cosmetic products, a framework for conducting population exposure assessments Part 2. Food Chem Toxicol 49:408–422

    Article  Google Scholar 

  • Jarvie HP, Al-Obaidi H, King SM et al (2009) Fate of silica nanoparticles in simulated primary wastewater treatment. Environ Sci Technol 43:8622–8628. doi:10.1021/es901399q

    Article  Google Scholar 

  • Kaegi R, Voegelin A, Sinnet B et al (2011) Behavior of metallic silver nanoparticles in a pilot wastewater treatment plant. Environ Sci Technol 45:3902–3908. doi:10.1021/es1041892

    Article  Google Scholar 

  • Kaur I, Agrawal R (2007) Nanotechnology: a new paradigm in cosmeceuticals. Recent Pat Drug Deliv Formul 1:171–182. doi:10.2174/187221107780831888

    Article  Google Scholar 

  • Keller AA, Lazareva A (2014) Predicted releases of engineered nanomaterials: from global to regional to local. Environ Sci Tech Lett 1:65–70. doi:10.1021/ez400106t

    Article  Google Scholar 

  • Keller AA, McFerran S, Lazareva A, Suh S (2013) Global life-cycle emissions of engineered nanomaterials. J Nanopart Res 1692. doi: 10.1007/s11051-013-1692-4

  • Kiser MA, Westerhoff P, Benn T et al (2009) Titanium nanomaterial removal and release from wastewater treatment plants. Environ Sci Technol 43:6757–6763. doi:10.1021/es901102n

    Article  Google Scholar 

  • Lewicka ZA, Yu WW, Oliva BL et al (2013) Photochemical behavior of nanoscale TiO2 and ZnO sunscreen ingredients. J Photochem Photobiol A Chem 263:24–33

    Article  Google Scholar 

  • Li M, Pokhrel S, Jin X et al (2011a) Stability, bioavailability, and bacterial toxicity of ZnO and iron-doped ZnO nanoparticles in aquatic media. Environ Sci Technol 45:755–761. doi:10.1021/es102266g

    Article  Google Scholar 

  • Li M, Zhu L, Lin D (2011b) Toxicity of ZnO nanoparticles to Escherichia coli: mechanism and the influence of medium components. Environ Sci Technol 45:1977–1983. doi:10.1021/es102624t

    Article  Google Scholar 

  • Limbach LK, Bereiter R, Müller E et al (2008) Removal of oxide nanoparticles in a model wastewater treatment plant: influence of agglomeration and surfactants on clearing efficiency. Environ Sci Technol 42:5828–5833. doi:10.1021/es800091f

    Article  Google Scholar 

  • Loretz LJ, Api AM, Barraj LM et al (2005) Exposure data for cosmetic products: lipstick, body lotion, and face cream. Food Chem Toxicol 43:279–291

    Article  Google Scholar 

  • Loretz L, Api AM, Barraj L et al (2006) Exposure data for personal care products: hairspray, spray perfume, liquid foundation, shampoo, body wash, and solid antiperspirant. Food Chem Toxicol 44:2008–2018

    Article  Google Scholar 

  • Loretz LJ, Api AM, Babcock L et al (2008) Exposure data for cosmetic products: facial cleanser, hair conditioner, and eye shadow. Food Chem Toxicol 46:1516–1524

    Article  Google Scholar 

  • Lowry GV, Gregory KB, Apte SC, Lead JR (2012) Transformations of nanomaterials in the environment. Environ Sci Technol 46:6891–6892. doi:10.1021/es3022039

    Article  Google Scholar 

  • Lv J, Zhang S, Luo L et al (2012) Dissolution and microstructural transformation of ZnO nanoparticles under the influence of phosphate. Environ Sci Technol 46:7215–7221. doi:10.1021/es301027a

    Article  Google Scholar 

  • Ma R, Levard C, Judy JD et al (2014) Fate of zinc oxide and silver nanoparticles in a pilot wastewater treatment plant and in processed biosolids. Environ Sci Technol 48:104–112. doi:10.1021/es403646x

    Article  Google Scholar 

  • Manová E, von Goetz N, Keller C et al (2013) Use patterns of leave-on personal care products among Swiss-German children, adolescents, and adults. Int J Environ Res Public Health 10:2778–2798. doi:10.3390/ijerph10072778

    Article  Google Scholar 

  • McIntyre RA (2012) Common nano-materials and their use in real world applications. Sci Prog 95:1–22. doi:10.3184/003685012X13294715456431

    Article  Google Scholar 

  • McNamara C, Rohan D, Golden D et al (2007) Probabilistic modelling of European consumer exposure to cosmetic products. Food Chem Toxicol 45:2086–2096

    Article  Google Scholar 

  • Meulenkamp EA (1998) Size dependence of the dissolution of ZnO nanoparticles. J Phys Chem B 102:7764–7769. doi:10.1021/jp982305u

    Article  Google Scholar 

  • Morabito K, Shapley NC, Steeley KG, Tripathi A (2011) Review of sunscreen and the emergence of non-conventional absorbers and their applications in ultraviolet protection. Int J Cosmet Sci 33:385–390. doi:10.1111/j.1468-2494.2011.00654.x

    Article  Google Scholar 

  • Mu L, Sprando RL (2010) Application of nanotechnology in cosmetics. Pharm Res 27:1746–1749. doi:10.1007/s11095-010-0139-1

    Article  Google Scholar 

  • Musee N, Zvimba JN, Schaefer LM et al (2014) Fate and behavior of ZnO- and Ag-engineered nanoparticles and a bacterial viability assessment in a simulated wastewater treatment plant. J Environ Sci Health A Tox Hazard Subst Environ Eng 49:59–66. doi:10.1080/10934529.2013.824302

    Article  Google Scholar 

  • Nazarenko Y, Zhen H, Han T et al (2012) Potential for inhalation exposure to engineered nanoparticles from nanotechnology-based cosmetic powders. Environ Health Perspect 120:885–892. doi:10.1289/ehp.1104350

    Article  Google Scholar 

  • Nowack B, Bucheli TD (2007) Occurrence, behavior and effects of nanoparticles in the environment. Environ Pollut 150:5–22. doi:10.1016/j.envpol.2007.06.006

    Article  Google Scholar 

  • Osmond-McLeod MJ, Oytam Y, Kirby JK et al (2013) Dermal absorption and short-term biological impact in hairless mice from sunscreens containing zinc oxide nano- or larger particles. Nanotoxicology. doi:10.3109/17435390.2013.855832

    Google Scholar 

  • Pauwels M, Dejaegher B, Vander Heyden Y, Rogiers V (2009) Critical analysis of the SCCNFP/SCCP safety assessment of cosmetic ingredients (2000–2006). Food Chem Toxicol 47:898–905

    Article  Google Scholar 

  • Piccinno F, Gottschalk F, Seeger S, Nowack B (2012) Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world. J Nanoparticle Res 14:1–11. doi:10.1007/s11051-012-1109-9

    Article  Google Scholar 

  • Poggio C, Lombardini M, Vigorelli P et al (2013) The role of different toothpastes on preventing dentin erosion: an SEM and AFM study. Scanning. doi:10.1002/sca.21105

    Google Scholar 

  • Rejeski D (2011) Nanotechnology and Consumer Products. Proj Emerg Nanotechnol 12:1–12. http://www.nanotechproject.org/publications/archive/nanotechnology_consumer_products/

  • Shafer MM, Overdier JT, Armstong DE (1998) Removal, partitioning, and fate of silver and other metals in wastewater treatment plants and effluent-receiving streams. Environ Toxicol Chem 17:630–641. doi:10.1002/etc.5620170416

    Article  Google Scholar 

  • Tovar-Sánchez A, Sánchez-Quiles D, Basterretxea G et al (2013) Sunscreen products as emerging pollutants to coastal waters. PLoS ONE 8:e65451. doi:10.1371/journal.pone.0065451

    Article  Google Scholar 

  • Tschoppe P, Zandim DL, Martus P, Kielbassa AM (2011) Enamel and dentine remineralization by nano-hydroxyapatite toothpastes. J Dent 39:430–437

    Article  Google Scholar 

  • Wang SQ, Tanner PR, Lim HW, Nash JF (2013) The evolution of sunscreen products in the United States–a 12-year cross sectional study. Photochem Photobiol Sci 12:197–202. doi:10.1039/c2pp25112d

    Article  Google Scholar 

  • Westerhoff P, Song G, Hristovski K, Kiser MA (2011) Occurrence and removal of titanium at full scale wastewater treatment plants: implications for TiO2 nanomaterials. J Environ Monit 13:1195–1203

    Article  Google Scholar 

  • Wu XM, Bennett DH, Ritz B et al (2010) Usage pattern of personal care products in California households. Food Chem Toxicol 48:3109–3119

    Article  Google Scholar 

  • Yang G, Cui Y, Zhong S (2009) Applications of Nanotechnology in Whitening and Anti-aging Cosmetics. J Cap Med Univ 6:035

    Google Scholar 

Download references

Acknowledgments

This material is based upon work supported by the National Science Foundation (NSF) and the US Environmental Protection Agency (EPA) under Grant DBI-0830117. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the NSF or EPA. This work has not been subjected to EPA review, and no official endorsement should be inferred.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arturo A. Keller.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 295 kb)

Supplementary material 2 (DOCX 608 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keller, A.A., Vosti, W., Wang, H. et al. Release of engineered nanomaterials from personal care products throughout their life cycle. J Nanopart Res 16, 2489 (2014). https://doi.org/10.1007/s11051-014-2489-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-014-2489-9

Keywords

Navigation