Skip to main content

Advertisement

Log in

Fungal Colonization of the Airways of Patients with Cystic Fibrosis: the Role of the Environmental Reservoirs

  • Review
  • Published:
Mycopathologia Aims and scope Submit manuscript

An Author Correction to this article was published on 22 April 2024

This article has been updated

Abstract

Filamentous fungi frequently colonize the airways of patients with cystic fibrosis and may cause severe diseases, such as the allergic bronchopulmonary aspergillosis. The most common filamentous fungi capable to chronically colonize the respiratory tract of the patients are Aspergillus fumigatus and Scedosporium species. Defining the treatment strategy may be challenging, the number of available drugs being limited and some of the causative agents being multiresistant microorganisms. The knowledge of the fungal niches in the outdoor and indoor environment is needed for understanding the origin of the contamination of the patients. In light of the abundance of some of the causative molds in compost, agricultural and flower fields, occupational activities related to such environments should be discouraged for patients with cystic fibrosis (CF). In addition, the microbiological monitoring of their indoor environment, including analysis of air and dust on surfaces, is essential to propose preventive measures aiming to reduce the exposure to environmental molds. Nevertheless, some specific niches were also identified in the indoor environment, in relation with humidity which favors the growth of thermotolerant molds. Potted plants were reported as indoor reservoirs for Scedosporium species. Likewise, Exophiala dermatitidis may be spread in the kitchen via dishwashers. However, genotype studies are still required to establish the link between dishwashers and colonization of the airways of CF patients by this black yeast. Moreover, as nothing is known regarding the other filamentous fungi associated with CF, further studies should be conducted to identify other potential specific niches in the habitat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Change history

References

  1. Elborn JS. Cystic fibrosis. Lancet. 2016;388:2519–31.

    Article  CAS  PubMed  Google Scholar 

  2. Bercusson A, Jarvis G, Shah A. CF Fungal disease in the age of CFTR modulators. Mycopathologia. 2021;186:655–64.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Schwarz C, Vandeputte P, Rougeron A, Giraud S, Dugé de Bernonville T, Duvaux L, et al. Developing collaborative works for faster progress on fungal respiratory infections in cystic fibrosis. Med Mycol. 2018;56:42–59.

    Article  PubMed  Google Scholar 

  4. Blanchard AC, Waters VJ. Microbiology of cystic fibrosis airway disease. Semin Respir Crit Care Med. 2019;40:727–36.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Johansen HK, Høiby N. Seasonal onset of initial colonisation and chronic infection with Pseudomonas aeruginosa in patients with cystic fibrosis in Denmark. Thorax. 1992;47:109–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hendricks MR, Lashua LP, Fischer DK, Flitter BA, Eichinger KM, Durbin JE, et al. Respiratory syncytial virus infection enhances Pseudomonas aeruginosa biofilm growth through dysregulation of nutritional immunity. Proc Natl Acad Sci USA. 2016;113:1642–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ciofu O, Hansen CR, Høiby N. Respiratory bacterial infections in cystic fibrosis. Curr Opin Pulm Med. 2013;19:251–8.

    Article  PubMed  Google Scholar 

  8. Ryan C, Ross S, Davey P, Duncan EM, Francis JJ, Fielding S, et al. Prevalence and causes of prescribing errors: the PRescribing Outcomes for Trainee Doctors Engaged in Clinical Training (PROTECT) study. PLoS ONE. 2014;9:e79802.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Whiteford ML, Wilkinson JD, McColl JH, Conlon FM, Michie JR, Evans TJ, et al. Outcome of Burkholderia (Pseudomonas) cepacia colonisation in children with cystic fibrosis following a hospital outbreak. Thorax. 1995;50:1194–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Stephenson AL, Sykes J, Berthiaume Y, Singer LG, Aaron SD, Whitmore GA, et al. Clinical and demographic factors associated with post-lung transplantation survival in individuals with cystic fibrosis. J Heart Lung Transpl. 2015;34:1139–45.

    Article  Google Scholar 

  11. Degiacomi G, Sammartino JC, Chiarelli LR, Riabova O, Makarov V, Pasca MR. Mycobacterium abscessus, an emerging and worrisome pathogen among cystic fibrosis patients. Int J Mol Sci. 2019;20:E5868.

    Article  Google Scholar 

  12. Renner S, Nachbaur E, Jaksch P, Dehlink E. Update on respiratory fungal infections in cystic fibrosis lung disease and after lung transplantation. J Fungi (Basel). 2020;6:381.

    Article  CAS  PubMed  Google Scholar 

  13. Wahab AA, Taj-Aldeen SJ, Kolecka A, ElGindi M, Finkel JS, Boekhout T. High prevalence of Candida dubliniensis in lower respiratory tract secretions from cystic fibrosis patients may be related to increased adherence properties. Int J Infect Dis. 2014;24:14–9.

    Article  PubMed  Google Scholar 

  14. Muthig M, Hebestreit A, Ziegler U, Seidler M, Müller F-MC. Persistence of Candida species in the respiratory tract of cystic fibrosis patients. Med Mycol. 2010;48:56–63.

    Article  CAS  PubMed  Google Scholar 

  15. Chotirmall SH, O’Donoghue E, Bennett K, Gunaratnam C, O’Neill SJ, McElvaney NG. Sputum Candida albicans presages FEV1 decline and hospital-treated exacerbations in cystic fibrosis. Chest. 2010;138:1186–95.

    Article  PubMed  Google Scholar 

  16. Al Shakirchi M, Klingspor L, Bergman P, Hjelte L, de Monestrol I. A 16-year retrospective study on fungal prevalence and diversity in patients with cystic fibrosis: Candida dubliniensis was associated with a decline in lung function. Int J Infect Dis. 2020;96:663–70.

    Article  CAS  PubMed  Google Scholar 

  17. Hickey PW, Sutton DA, Fothergill AW, Rinaldi MG, Wickes BL, Schmidt HJ, et al. Trichosporon mycotoxinivorans, a novel respiratory pathogen in patients with cystic fibrosis. J Clin Microbiol. 2009;47:3091–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Roehmel JF, Tintelnot K, Bernhardt A, Seibold M, Staab D, Schwarz C. Arxula adeninivorans causing invasive pulmonary mycosis and fungaemia in cystic fibrosis. Lancet. 2015;385:1476.

    Article  PubMed  Google Scholar 

  19. Schwarz C, Eschenhagen P, Bouchara JP. Emerging fungal threats in cystic fibrosis. Mycopathologia. 2021;186:639–53.

    Article  CAS  PubMed  Google Scholar 

  20. Borman AM, Palmer MD, Delhaes L, Carrère J, Favennec L, Ranque S, et al. Lack of standardization in the procedures for mycological examination of sputum samples from CF patients: a possible cause for variations in the prevalence of filamentous fungi. Med Mycol. 2010;48(Suppl 1):S88-97.

    Article  PubMed  Google Scholar 

  21. Bouchara J-P, Symoens F, Schwarz C, Chaturvedi V. Fungal respiratory infections in cystic fibrosis (CF): recent progress and future research agenda. Mycopathologia. 2018;183:1–5.

    Article  PubMed  Google Scholar 

  22. Pihet M, Carrère J, Cimon B, Chabasse D, Delhaes L, Symoens F, et al. Occurrence and relevance of filamentous fungi in respiratory secretions of patients with cystic fibrosis-a review. Med Mycol. 2009;47:387–97.

    Article  PubMed  Google Scholar 

  23. Paugam A, Baixench MT, Demazes-Dufeu N, Burgel PR, Sauter E, Kanaan R, et al. Characteristics and consequences of airway colonization by filamentous fungi in 201 adult patients with cystic fibrosis in France. Med Mycol. 2010;48(Suppl 1):S32-36.

    Article  PubMed  Google Scholar 

  24. Symoens F, Haase G, Pihet M, Carrère J, Beguin H, Degand N, et al. Unusual Aspergillus species in patients with cystic fibrosis. Med Mycol. 2010;48:S10-16.

    Article  PubMed  Google Scholar 

  25. Devoto TB, Alava KSH, Pola SJ, Pereda R, Rubeglio E, Finquelievich JL, et al. Molecular epidemiology of Aspergillus species and other moulds in respiratory samples from Argentinean patients with cystic fibrosis. Med Mycol. 2020;58:867–73.

    Article  CAS  PubMed  Google Scholar 

  26. Rougeron A, Giraud S, Razafimandimby B, Meis JF, Bouchara JP, Klaassen CH. Different colonization patterns of Aspergillus terreus in patients with cystic fibrosis. Clin Microbiol Infect. 2013;20:327–33.

    Article  PubMed  Google Scholar 

  27. Cimon B, Symoens F, Zouhair R, Chabasse D, Nolard N, Defontaine A, et al. Molecular epidemiology of airway colonisation by Aspergillus fumigatus in cystic fibrosis patients. J Med Microbiol. 2001;50:367–74.

    Article  CAS  PubMed  Google Scholar 

  28. Engel TGP, Erren E, Vanden Driessche KSJ, Melchers WJG, Reijers MH, Merkus P, et al. Aerosol transmission of Aspergillus fumigatus in cystic fibrosis patients in the Netherlands. Emerg Infect Dis. 2019;25:797–9.

    Article  PubMed  PubMed Central  Google Scholar 

  29. de Vrankrijker AMM, van der Ent CK, van Berkhout FT, Stellato RK, Willems RJL, Bonten MJM, et al. Aspergillus fumigatus colonization in cystic fibrosis: implications for lung function? Clin Microbiol Infect. 2011;17:1381–6.

    Article  PubMed  Google Scholar 

  30. Iversen M, Burton CM, Vand S, Skovfoged L, Carlsen J, Milman N, et al. Aspergillus infection in lung transplant patients: incidence and prognosis. Eur J Clin Microbiol Infect Dis. 2007;26:879–86.

    Article  CAS  PubMed  Google Scholar 

  31. Wojnarowski C, Eichler I, Gartner C, Götz M, Renner S, Koller DY, et al. Sensitization to Aspergillus fumigatus and lung function in children with cystic fibrosis. Am J Respir Crit Care Med. 1997;155:1902–7.

    Article  CAS  PubMed  Google Scholar 

  32. Speirs JJ, van der Ent CK, Beekman JM. Effects of Aspergillus fumigatus colonization on lung function in cystic fibrosis. Curr Opin Pulm Med. 2012;18:632–8.

    Article  PubMed  Google Scholar 

  33. Zhang Z-Y, Shao Q-Y, Li X, Chen W-H, Liang J-D, Han Y-F, et al. Culturable fungi from urban soils in China I: Description of 10 new taxa. Lee SC, editor. Microbiol Spectr. 2021;9:e00867-21.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Ramirez-Garcia A, Pellon A, Rementeria A, Buldain I, Barreto-Bergter E, Rollin-Pinheiro R, et al. Scedosporium and Lomentospora: an updated overview of underrated opportunists. Med Mycol. 2018;56:S102–25.

    Article  Google Scholar 

  35. Abrantes RA, Refojo N, Hevia AI, Fernández J, Isla G, Córdoba S, et al. Scedosporium spp. from clinical setting in Argentina, with the proposal of the new pathogenic species Scedosporium americanum. J Fungi. 2021;7:160.

    Article  CAS  Google Scholar 

  36. Rougeron A, Giraud S, Alastruey-Izquierdo A, Cano-Lira J, Rainer J, Mouhajir A, et al. Ecology of Scedosporium species: present knowledge and future research. Mycopathologia. 2018;183:185–200.

    Article  CAS  PubMed  Google Scholar 

  37. Chen M, Kondori N, Deng S, Gerrits van den Ende AHG, Lackner M, Liao W, et al. Direct detection of Exophiala and Scedosporium species in sputa of patients with cystic fibrosis. Med Mycol. 2018;56:695–702.

    Article  CAS  PubMed  Google Scholar 

  38. Zouhair R, Rougeron A, Razafimandimby B, Kobi A, Bouchara JP, Giraud S. Distribution of the different species of the Pseudallescheria boydii/Scedosporium apiospermum complex in French patients with cystic fibrosis. Med Mycol. 2013;51:603–13.

    Article  PubMed  Google Scholar 

  39. Defontaine A, Zouhair R, Cimon B, Carrère J, Bailly E, Symoens F, et al. Genotyping study of Scedosporium apiospermum isolates from patients with cystic fibrosis. J Clin Microbiol. 2002;40:2108–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Giraud S, Bouchara J-P. Scedosporium apiospermum complex: diagnosis and species identification. Curr Fungal Infect Rep. 2014;8:211–9.

    Article  Google Scholar 

  41. Cimon B, Carrère J, Vinatier JF, Chazalette JP, Chabasse D, Bouchara JP. Clinical significance of Scedosporium apiospermum in patients with cystic fibrosis. Eur J Clin Microbiol Infect Dis. 2000;19:53–6.

    Article  CAS  PubMed  Google Scholar 

  42. Kramer R, Sauer-Heilborn A, Welte T, Guzman CA, Abraham W-R, Höfle MG. Cohort study of airway mycobiome in adult cystic fibrosis patients: Differences in community structure between fungi and bacteria reveal predominance of transient fungal elements. J Clin Microbiol. 2015;53:2900–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Castiglioni B, Sutton DA, Rinaldi MG, Fung J, Kusne S. Pseudallescheria boydii (Anamorph Scedosporium apiospermum). Infection in solid organ transplant recipients in a tertiary medical center and review of the literature. Medicine (Baltimore). 2002;81:333–48.

    Article  PubMed  Google Scholar 

  44. Lackner M, Klaassen CH, Meis JF, van den Ende AH, de Hoog GS. Molecular identification tools for sibling species of Scedosporium and Pseudallescheria. Med Mycol. 2012;50:497–508.

    Article  CAS  PubMed  Google Scholar 

  45. Hoenigl M, Salmanton-García J, Walsh TJ, Nucci M, Neoh CF, Jenks JD, et al. Global guideline for the diagnosis and management of rare mould infections: an initiative of the European Confederation of Medical Mycology in cooperation with the International Society for Human and Animal Mycology and the American Society for Microbiology. Lancet Infect Dis. 2021;21:e246–57.

    Article  CAS  PubMed  Google Scholar 

  46. Vagefi MR, Kim ET, Alvarado RG, Duncan JL, Howes EL, Crawford JB. Bilateral endogenous Scedosporium prolificans endophthalmitis after lung transplantation. Ame J Ophthalmol. 2005;139:370–3.

    Article  Google Scholar 

  47. Giraud S, Favennec L, Bougnoux ME, Bouchara JP. Rasamsonia argillacea species complex: taxonomy, pathogenesis and clinical relevance. Future Microbiol. 2013;8:967–78.

    Article  CAS  PubMed  Google Scholar 

  48. Abdolrasouli A, Bercusson AC, Rhodes JL, Hagen F, Buil JB, Tang AYY, et al. Airway persistence by the emerging multi-azole-resistant Rasamsonia argillacea complex in cystic fibrosis. Mycoses. 2018;61:665–73.

    Article  CAS  PubMed  Google Scholar 

  49. Hong G, White M, Lechtzin N, West NE, Avery R, Miller H, et al. Fatal disseminated Rasamsonia infection in cystic fibrosis post-lung transplantation. J Cyst Fibros. 2017;16:e3-7.

    Article  PubMed  Google Scholar 

  50. Blaschke-Hellmessen R, Lauterbach I, Paul KD, Tintelnot K, Weissbach G. Detection of Exophiala dermatitidis (Kano) De Hoog 1977 in septicemia of a child with acute lymphatic leukemia and in patients with cystic fibrosis. Mycoses. 1994;37(Suppl 1):89–96.

    PubMed  Google Scholar 

  51. Bakare N, Rickerts V, Bargon J, Just-Nübling G. Prevalence of Aspergillus fumigatus and other fungal species in the sputum of adult patients with cystic fibrosis. Mycoses. 2003;46:19–23.

    Article  CAS  PubMed  Google Scholar 

  52. Kondori N, Gilljam M, Lindblad A, Jönsson B, Moore ERB, Wennerås C. High rate of Exophiala dermatitidis recovery in the airways of patients with cystic fibrosis is associated with pancreatic insufficiency. J Clin Microbiol. 2011;49:1004–9.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Ziesing S, Suerbaum S, Sedlacek L. Fungal epidemiology and diversity in cystic fibrosis patients over a 5-year period in a national reference center. Med Mycol. 2016;54:781–6.

    Article  CAS  PubMed  Google Scholar 

  54. Tewkesbury DH, Looi E, Barry PJ, Edwards G, Green H, Smith M, et al. Isolation of Exophiala dermatitidis is not associated with worse clinical outcomes during acute pulmonary exacerbations in cystic fibrosis. J Med Microbiol. 2022;71:001431.

    Article  Google Scholar 

  55. Lebecque P, Leonard A, Huang D, Reychler G, Boeras A, Leal T, et al. Exophiala (Wangiella) dermatitidis and cystic fibrosis—prevalence and risk factors. Med Mycol. 2010;48(Suppl 1):S4-9.

    Article  PubMed  Google Scholar 

  56. Packeu A, Lebecque P, Rodriguez-Villalobos H, Boeras A, Hendrickx M, Bouchara J-P, et al. Molecular typing and antifungal susceptibility of Exophiala isolates from patients with cystic fibrosis. J Med Microbiol. 2012;61:1226–33.

    Article  CAS  PubMed  Google Scholar 

  57. Babič MN, Zupančič J, Gunde-Cimerman N, de Hoog S, Zalar P. Ecology of the human opportunistic black yeast Exophiala dermatitidis indicates preference for human-made habitats. Mycopathologia. 2018;183:201–12.

    Article  PubMed  Google Scholar 

  58. Ayling-Smith J, Speight L, Dhillon R, Backx M, White PL, Hood K, et al. The presence of Exophiala dermatitidis in the respiratory tract of cystic fibrosis patients accelerates lung function decline: a retrospective review of lung function. J Fungi (Basel). 2022;8:376.

    Article  PubMed  Google Scholar 

  59. Cimon B, Challier S, Beguin H, Carrere J, Chabasse D, Bouchara JP. Airway colonization by Acrophialophora fusispora in patients with cystic fibrosis. J Clin Microbiol. 2005;43:1484–7.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Vos CG, Murk J-LAN, Hartemink KJ, Daniels JMA, Paul MA, Debets-Ossenkopp YJ. A rare pulmonary infection caused by Arthrographis kalrae. J Med Microbiol. 2012;61:593–5.

    Article  CAS  PubMed  Google Scholar 

  61. Nevez G, Robert-Gangneux F, Pougnet L, Virmaux M, Belleguic C, Deneuville E, et al. Pneumocystis jirovecii and cystic fibrosis in Brittany, France. Mycopathologia. 2018;183:81–7.

    Article  PubMed  Google Scholar 

  62. Pederiva MA, Wissmann G, Friaza V, Morilla R, de La Horra C, Montes-Cano MA, et al. High prevalence of Pneumocystis jirovecii colonization in Brazilian cystic fibrosis patients. Med Mycol. 2012;50:556–60.

    Article  CAS  PubMed  Google Scholar 

  63. Respaldiza N, Montes-Cano MA, Dapena FJ, de la Horra C, Mateos I, Medrano FJ, et al. Prevalence of colonisation and genotypic characterisation of Pneumocystis jirovecii among cystic fibrosis patients in Spain. Clin Microbiol Infect. 2005;11:1012–5.

    Article  CAS  PubMed  Google Scholar 

  64. Harvey C, Weldon S, Elborn S, Downey DG, Taggart C. The effect of CFTR modulators on airway infection in cystic fibrosis. Int J Mol Sci. 2022;23:3513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bell SC, Mall MA, Gutierrez H, Macek M, Madge S, Davies JC, et al. The future of cystic fibrosis care: a global perspective. Lancet Respir Med. 2020;8:65–124.

    Article  CAS  PubMed  Google Scholar 

  66. Liu L, Wang S, Guo X, Zhao T, Zhang B. Succession and diversity of microorganisms and their association with physicochemical properties during green waste thermophilic composting. Waste Manag. 2018;73:101–12.

    Article  CAS  PubMed  Google Scholar 

  67. Song C, Li M, Jia X, Wei Z, Zhao Y, Xi B, et al. Comparison of bacterial community structure and dynamics during the thermophilic composting of different types of solid wastes: anaerobic digestion residue, pig manure and chicken manure. Microb Biotechnol. 2014;7:424–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Cerda A, Artola A, Font X, Barrena R, Gea T, Sánchez A. Composting of food wastes: status and challenges. Bioresour Technol. 2018;248:57–67.

    Article  CAS  PubMed  Google Scholar 

  69. Reyes-Torres M, Oviedo-Ocaña ER, Dominguez I, Komilis D, Sánchez A. A systematic review on the composting of green waste: feedstock quality and optimization strategies. Waste Manag. 2018;77:486–99.

    Article  CAS  PubMed  Google Scholar 

  70. Mehta CM, Palni U, Franke-Whittle IH, Sharma AK. Compost: Its role, mechanism and impact on reducing soil-borne plant diseases. Waste Manag. 2014;34:607–22.

    Article  CAS  PubMed  Google Scholar 

  71. Sparling GP, Fermor TR, Wood DA. Measurement of the microbial biomass is compost wheat straw, and the possible contribution of the biomass to the nutrition of Agaricus bisporus. Soil Biol Biochem. 1982;14:609–11.

    Article  Google Scholar 

  72. Di Piazza S, Houbraken J, Meijer M, Cecchi G, Kraak B, Rosa E, et al. Thermotolerant and thermophilic mycobiota in different steps of compost maturation. Microorganisms. 2020;8:880.

    Article  PubMed  PubMed Central  Google Scholar 

  73. de Oliveira TB, Lopes VCP, Barbosa FN, Ferro M, Meirelles LA, Sette LD, et al. Fungal communities in pressmud composting harbour beneficial and detrimental fungi for human welfare. Microbiology. 2016;162:1147–56.

    Article  PubMed  Google Scholar 

  74. López-González JA, Suárez-Estrella F, Vargas-García MC, López MJ, Jurado MM, Moreno J. Dynamics of bacterial microbiota during lignocellulosic waste composting: studies upon its structure, functionality and biodiversity. Bioresour Technol. 2015;175:406–16.

    Article  PubMed  Google Scholar 

  75. Anastasi A, Varese GC, Marchisio VF. Isolation and identification of fungal communities in compost and vermicompost. Mycologia. 2005;97:33–44.

    Article  PubMed  Google Scholar 

  76. Wéry N. Bioaerosols from composting facilities—a review. Front Cell Infect Microbiol. 2014;4:42. https://doi.org/10.3389/fcimb.2014.00042.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Sebők F, Dobolyi C, Bobvos J, Szoboszlay S, Kriszt B, Magyar D. Thermophilic fungi in air samples in surroundings of compost piles of municipal, agricultural and horticultural origin. Aerobiologia. 2016;32:255–63.

    Article  Google Scholar 

  78. Fischer G, Albrecht A, Jäckel U, Kämpfer P. Analysis of airborne microorganisms, MVOC and odour in the surrounding of composting facilities and implications for future investigations. Int J Hyg Environ Health. 2008;211:132–42.

    Article  PubMed  Google Scholar 

  79. Pankhurst LJ, Deacon LJ, Liu J, Drew GH, Hayes ET, Jackson S, et al. Spatial variations in airborne microorganism and endotoxin concentrations at green waste composting facilities. I nt J Hyg Environ Health. 2011;214:376–83.

    Article  CAS  Google Scholar 

  80. Le Goff O, Godon J-J, Milferstedt K, Bacheley H, Steyer J-P, Wéry N. A new combination of microbial indicators for monitoring composting bioaerosols. Atmos Environ. 2012;61:428–33.

    Article  Google Scholar 

  81. Herr CEW. Effects of bioaerosol polluted outdoor air on airways of residents: a cross sectional study. Occup Environ Med. 2003;60:336–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Bünger J, Schappler-Scheele B, Hilgers R, Hallier E. A 5-year follow-up study on respiratory disorders and lung function in workers exposed to organic dust from composting plants. Int Arch Occup Environ Health. 2007;80:306–12.

    Article  PubMed  Google Scholar 

  83. Schlosser O, Huyard A, Cartnick K, Yañez A, Catalán V, Do QZ. Bioaerosol in composting facilities: occupational health risk assessment. Water Environ Res. 2009;81:866–77.

    Article  CAS  PubMed  Google Scholar 

  84. Denning DW, Venkateswarlu K, Oakley KL, Anderson MJ, Manning NJ, Stevens DA, et al. Itraconazole resistance in Aspergillus fumigatus. Antimicrob Agents Chemother. 1997;41:1364–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Denning DW, Cadranel J, Beigelman-Aubry C, Ader F, Chakrabarti A, Blot S, et al. Chronic pulmonary aspergillosis: rationale and clinical guidelines for diagnosis and management. Eur Respir J. 2016;47:45–68.

    Article  CAS  PubMed  Google Scholar 

  86. Jeanvoine A, Rocchi S, Bellanger AP, Reboux G, Millon L. Azole-resistant Aspergillus fumigatus: A global phenomenon originating in the environment? Med Mal Infect. 2020;50:389–95.

    Article  CAS  PubMed  Google Scholar 

  87. Burks C, Darby A, Gómez Londoño L, Momany M, Brewer MT. Azole-resistant Aspergillus fumigatus in the environment: identifying key reservoirs and hotspots of antifungal resistance, Xue C, editor. PLoS Pathog. 2021;17:e1009711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Verweij PE, Mellado E, Melchers WJG. Multiple-triazole-resistant aspergillosis. N Engl J Med. 2007;356:1481–3.

    Article  CAS  PubMed  Google Scholar 

  89. Snelders E, Camps SMT, Karawajczyk A, Schaftenaar G, Kema GHJ, van der Lee HA, et al. Triazole fungicides can induce cross-resistance to medical triazoles in Aspergillus fumigatus. PLoS ONE. 2012;7:e31801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Faria-Ramos I, Farinha S, Neves-Maia J, Tavares PR, Miranda IM, Estevinho LM, et al. Development of cross-resistance by Aspergillus fumigatus to clinical azoles following exposure to prochloraz, an agricultural azole. BMC Microbiol. 2014;14:155.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Rhodes J, Abdolrasouli A, Dunne K, Sewell TR, Zhang Y, Ballard E, et al. Population genomics confirms acquisition of drug-resistant Aspergillus fumigatus infection by humans from the environment. Nat Microbiol. 2022;7:663–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Pérez-Cantero A, López-Fernández L, Guarro J, Capilla J. Azole resistance mechanisms in Aspergillus: update and recent advances. Int J Antimicrob Agents. 2020;55:105807.

    Article  PubMed  Google Scholar 

  93. Nawrot U, Kurzyk E, Arendrup MC, Mroczynska M, Wlodarczyk K, Sulik-Tyszka B, et al. Detection of Polish clinical Aspergillus fumigatus isolates resistant to triazoles. Med Mycol. 2018;56:121–4.

    Article  CAS  PubMed  Google Scholar 

  94. Dunne K, Hagen F, Pomeroy N, Meis JF, Rogers TR. Intercountry transfer of triazole-resistant Aspergillus fumigatus on plant bulbs. Clin Infect Dis. 2017;65:147–9.

    Article  PubMed  Google Scholar 

  95. Verweij PE, Lucas JA, Arendrup MC, Bowyer P, Brinkmann AJF, Denning DW, et al. The one health problem of azole resistance in Aspergillus fumigatus: current insights and future research agenda. Fungal Biol Rev. 2020;34:202–14.

    Article  Google Scholar 

  96. Schoustra SE, Debets AJM, Rijs AJMM, Zhang J, Snelders E, Leendertse PC, et al. Environmental hotspots for azole resistance selection of Aspergillus fumigatus, the Netherlands. Emerg Infect Dis. 2019;25:1347–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Hamprecht A, Morio F, Bader O, Le Pape P, Steinmann J, Dannaoui E. Azole resistance in Aspergillus fumigatus in patients with cystic fibrosis: a matter of concern? Mycopathologia. 2018;183:151–60.

    Article  CAS  PubMed  Google Scholar 

  98. Hoenigl M, Sprute R, Egger M, Arastehfar A, Cornely OA, Krause R, et al. The antifungal pipeline: fosmanogepix, ibrexafungerp, olorofim, opelconazole, and rezafungin. Drugs. 2021;81:1703–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Rocchi S, Richaud-Thiriez B, Barrera C, Grenouillet F, Dalphin J-C, Millon L, et al. Evaluation of mold exposure in cystic fibrosis patients’ dwellings and allergic bronchopulmonary risk. J Cyst Fibros. 2015;14:242–7.

    Article  PubMed  Google Scholar 

  100. WHO Guidelines for indoor air quality: Dampness and mould [Internet]. Geneva: World Health Organization; 2009 [cited 2022 Oct 11]. Available from: http://www.ncbi.nlm.nih.gov/books/NBK143941/

  101. Summerbell RC, Krajden S, Kane J. Potted plants in hospitals as reservoirs of pathogenic fungi. Mycopathologia. 1989;106:13–22.

    Article  CAS  PubMed  Google Scholar 

  102. Sidot C, Simon P, Bouchara JP, Chabasse D, Urban T, Giniès JL. 116 Scedosporium apiospermum. Environmental study in the homes of patients with cystic fibrosis. J Cyst Fibros. 2007;6:S29.

    Article  Google Scholar 

  103. Bouchara J-P, Le Govic Y, Kabbara S, Cimon B, Zouhair R, Hamze M, et al. Advances in understanding and managing Scedosporium respiratory infections in patients with cystic fibrosis. Expert Rev Respir Med. 2020;14:259–73.

    Article  CAS  PubMed  Google Scholar 

  104. Matray O, Mouhajir A, Giraud S, Godon C, Gargala G, Labbe F, et al. Semi-automated repetitive sequence-based PCR amplification for species of the Scedosporium apiospermum complex. Med Mycol. 2016;54:409–19.

    Article  CAS  PubMed  Google Scholar 

  105. Pham T, Giraud S, Schuliar G, Rougeron A, Bouchara J-P. Scedo-Select III: a new semi-selective culture medium for detection of the Scedosporium apiospermum species complex. Med Mycol. 2015;53:512–9.

    Article  CAS  PubMed  Google Scholar 

  106. Haas D, Lesch S, Buzina W, Galler H, Gutschi AM, Habib J, et al. Culturable fungi in potting soils and compost. Med Mycol. 2016;54:825–34.

    Article  PubMed  Google Scholar 

  107. Mouhajir A, Poirier W, Angebault C, Rahal E, Bouabid R, Bougnoux M-E, et al. Scedosporium species in soils from various biomes in Northwestern Morocco. Hernando Echevarría FL, editor. PLoS ONE. 2020;15:e0228897.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Döğen A, Kaplan E, Öksüz Z, Serin MS, Ilkit M, de Hoog GS. Dishwashers are a major source of human opportunistic yeast-like fungi in indoor environments in Mersin. Turkey Med Mycol. 2013;51:493–8.

    Article  PubMed  Google Scholar 

  109. Hamada N, Abe N. Physiological characteristics of 13 common fungal species in bathrooms. Mycoscience. 2009;50:421–9.

    Article  Google Scholar 

  110. Nishimura K, Miyaji M. Studies on a saprophyte of Exophiala dermatitidis isolated from a humidifier. Mycopathologia. 1982;77:173–81.

    Article  CAS  PubMed  Google Scholar 

  111. Matos T, de Hoog GS, de Boer AG, de Crom I, Haase G. High prevalence of the neurotrope Exophiala dermatitidis and related oligotrophic black yeasts in sauna facilities. Mycoses. 2002;45:373–7.

    Article  CAS  PubMed  Google Scholar 

  112. Sudhadham M, Prakitsin S, Sivichai S, Chaiyarat R, Dorrestein GM, Menken SBJ, et al. The neurotropic black yeast Exophiala dermatitidis has a possible origin in the tropical rain forest. Stud Mycol. 2008;61:145–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Zupančič J, Novak Babič M, Zalar P, Gunde-Cimerman N. The black yeast Exophiala dermatitidis and other selected opportunistic human fungal pathogens spread from dishwashers to kitchens, Sturtevant J, editor. PLoS ONE. 2016;11:e0148166.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Wang X, Cai W, van den Ende AHGG, Zhang J, Xie T, Xi L, et al. Indoor wet cells as a habitat for melanized fungi, opportunistic pathogens on humans and other vertebrates. Sci Rep. 2018;8:7685.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Jang K-S, Yun Y-H, Yoo H-D, Kim S-H. Molds isolated from pet dogs. Mycobiology. 2007;35:100–2.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Mohan K, Fothergill JL, Storrar J, Ledson MJ, Winstanley C, Walshaw MJ. Transmission of Pseudomonas aeruginosa epidemic strain from a patient with cystic fibrosis to a pet cat. Thorax. 2008;63:839–40.

    Article  CAS  PubMed  Google Scholar 

  117. Register KB, Sukumar N, Palavecino EL, Rubin BK, Deora R. Bordetella bronchiseptica in a paediatric cystic fibrosis patient: possible transmission from a household cat: B. bronchiseptica in a CF patient. Zoonoses Public Health. 2012;59:246–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Thronicke A, Heger N, Antweiler E, Krannich A, Roehmel J, Brandt C, et al. Allergic bronchopulmonary aspergillosis is associated with pet ownership in cystic fibrosis. Pediatr Allergy Immunol. 2016;27:597–603.

    Article  PubMed  Google Scholar 

  119. Grehn C, Eschenhagen P, Temming S, Düesberg U, Neumann K, Schwarz C. Frequent pet contact as risk factor for allergic bronchopulmonary aspergillosis in cystic fibrosis. Front Cell Infect Microbiol. 2021;10:601821.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Gangneux J-P, Bouvrais M, Frain S, Morel H, Deguen S, Chevrier S, et al. Asthma and indoor environment: usefulness of a global allergen avoidance method on asthma control and exposure to molds. Mycopathologia. 2020;185:367–71.

    PubMed  Google Scholar 

  121. Gangneux J-P, Godet C, Denning DW. Allergic diseases and fungal exposome: prevention is better than cure. Allergy. 2022;77:3182–4.

    Article  PubMed  Google Scholar 

  122. Le Cann P, Paulus H, Glorennec P, Le Bot B, Frain S, Gangneux JP. Home environmental interventions for the prevention or control of allergic and respiratory diseases: What really works? J Allergy Clin Immunol Pract. 2017;5:66–79.

    Article  PubMed  Google Scholar 

  123. Méheust D, Le Cann P, Reboux G, Millon L, Gangneux J-P. Indoor fungal contamination: health risks and measurement methods in hospitals, homes and workplaces. Crit Rev Microbiol. 2014;40:248–60.

    Article  PubMed  Google Scholar 

  124. Vesper S, McKinstry C, Haugland R, Wymer L, Bradham K, Ashley P, et al. Development of an environmental relative moldiness index for US homes. J Occup Environ Med. 2007;49:829–33.

    Article  PubMed  Google Scholar 

  125. Gangneux J-P, Sassi M, Lemire P, Le Cann P. Metagenomic characterization of indoor dust bacterial and fungal microbiota in homes of asthma and non-asthma patients using next generation sequencing. Front Microbiol. 2020;11:1671.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Paroha S, Kachhwaha A, Singh S. Diversity of micro-flora in different combinations of press-mud for biogas production. Int J Microbiol Res. 2020;12:1821–7.

    CAS  Google Scholar 

  127. Dehghani R, Asadi MA, Charkhloo E, Mostafaie G, Saffari M, Mousavi GA, et al. Identification of fungal communities in producing compost by windrow method. J Environ Prot. 2012;03:61–7.

    Article  Google Scholar 

  128. Langarica-Fuentes A, Handley PS, Houlden A, Fox G, Robson GD. An investigation of the biodiversity of thermophilic and thermotolerant fungal species in composts using culture-based and molecular techniques. Fungal Ecol. 2014;11:132–44.

    Article  Google Scholar 

  129. De Gannes V, Eudoxie G, Hickey WJ. Insights into fungal communities in composts revealed by 454-pyrosequencing: implications for human health and safety. Front Microbiol. 2013;4:164.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Gu W, Lu Y, Tan Z, Xu P, Xie K, Li X, et al. Fungi diversity from different depths and times in chicken manure waste static aerobic composting. Bioresour Technol. 2017;239:447–53.

    Article  CAS  PubMed  Google Scholar 

  131. Sun L, Han X, Li J, Zhao Z, Liu Y, Xi Q, et al. Microbial community and its association with physicochemical factors during compost bedding for dairy cows. Front Microbiol. 2020;11:254.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Kulesza K, Biedunkiewicz A, Nowacka K, Dynowska M, Urbaniak M, Stępień Ł. Dishwashers as an extreme environment of potentially pathogenic yeast species. Pathogens. 2021;10:446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

During this work, Kevin Ravenel benefited from a doctoral contract funded by the University of Angers and Angers Loire Métropole (France), which are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

KR and HG performed the scientific monitoring and data recovery. They also participated in the writing of the draft. J-PB and J-PG provided the funding and were responsible for the final version of the paper. AG and SG designed and supervised the study and participated in the writing of the paper.

Corresponding author

Correspondence to Sandrine Giraud.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Handling Editor: Vishnu Chaturvedi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: The given and family names of all the authors were incorrectly swapped. The correct given and family names of the authors are ‘Kévin Ravenel, Hélène Guegan, Amandine Gastebois, Jean-Philippe Bouchara, Jean-Pierre Gangneux and Sandrine Giraud’.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ravenel, K., Guegan, H., Gastebois, A. et al. Fungal Colonization of the Airways of Patients with Cystic Fibrosis: the Role of the Environmental Reservoirs. Mycopathologia 189, 19 (2024). https://doi.org/10.1007/s11046-023-00818-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11046-023-00818-x

Keywords

Navigation