Skip to main content
Log in

Inflammasome and Inflammatory Programmed Cell Death in Chromoblastomycosis

  • Original Article
  • Published:
Mycopathologia Aims and scope Submit manuscript

Abstract

Chromoblastomycosis (CBM) is a chronic, progressive fungal disease of the skin and subcutaneous tissue caused by a group of dematiaceous fungi. Verrucous lesions present parasite-rich granulomas and predominance of a Th2 patterns of cytokines. The inflammasome constitutes a macromolecular protein complex that play a role in the activation of caspase 1 that cleaves pro-IL1β and pro-IL18, essential mediators of inflammation, and also activates pyroptosis. We intended to explore the presence and a possible role of inflammasome elements in cutaneous human lesions in CBM, considering the expression of IL1β, IL18, caspase 1, NLRP1, and also RIPK3, a key downstream component of necroptosis signaling. 35 skin biopsies of cutaneous lesions of verrucous form of CBM and 10 biopsies from normal skin were selected. The diagnosis was based on histological and clinical analysis. An immunohistochemical protocol was performed. The histopathological analysis evidenced epidermis with hyperkeratosis, irregular acanthosis, and micro abscesses. The dermis presented suppurative granulomas and inflammatory infiltrate composed by giant cells, macrophages, epithelioid cells, lymphocytes, and some eosinophils. Positive cells were distributed in the inflammatory infiltrate, with an increased number of cells expressing caspase 1, IL1β and IL18. Cells expressing RIPK3 and NLRP1 were less frequent. The intense presence of caspase 1, IL1β and IL18, allied to NLRP1 expression, suggest that inflammasome and pyroptosis could play a role in the immune response against fungal agents of CBM. Our results, allied to data from literature, could suggest that inflammasome-mediated response and pyroptosis could be a target to be explored to decrease CBM lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Santos DWCL, de Azevedo CMPES, Vicente VA, Queiroz-Telles F, Rodrigues AM, de Hoog GS, et al. The global burden of chromoblastomycosis. PLoS Negl Trop Dis. 2021;12(15):e0009611. https://doi.org/10.1371/journal.pntd.0009611.

    Article  Google Scholar 

  2. Silva JP, de Souza W, Rozental S. Chromoblastomycosis: a retrospective study of 325 cases on Amazonic Region (Brazil). Mycopathologia. 1998–1999;143:171–5. https://doi.org/10.1023/a:1006957415346.

  3. Queiroz-Telles F, Nucci M, Colombo AL, Tobón A, Restrepo A. Mycoses of implantation in Latin America: an overview of epidemiology, clinical manifestations, diagnosis and treatment. Med Mycol. 2011;49:225–36. https://doi.org/10.3109/13693786.2010.539631.

    Article  PubMed  Google Scholar 

  4. Queiroz-Telles F, de Hoog S, Santos DW, Salgado CG, Vicente VA, Bonifaz A, et al. Chromoblastomycosis. Clin Microbiol Rev. 2017;30:233–76. https://doi.org/10.1128/CMR.00032-16.

    Article  CAS  PubMed  Google Scholar 

  5. Queiroz-Telles F, Esterre P, Perez-Blanco M, Vitale RG, Salgado CG, Bonifaz A. Chromoblastomycosis: an overview of clinical manifestations, diagnosis and treatment. Med Mycol. 2009;47:3–15. https://doi.org/10.1080/13693780802538001.

    Article  PubMed  Google Scholar 

  6. d’Avila SC, Pagliari C, Duarte MI. The cell-mediated immune reaction in the cutaneous lesion of chromoblastomycosis and their correlation with different clinical forms of the disease. Mycopathologia. 2003;156(2):51–60. https://doi.org/10.1023/a:1022948329193.

    Article  PubMed  Google Scholar 

  7. Silva AA, Criado PR, Nunes RS, da Silva WL, Kanashiro-Galo L, Duarte MI, et al. In situ immune response in human chromoblastomycosis—a possible role for regulatory and Th17 T cells. PLoS Negl Trop Dis. 2014;8:e3162. https://doi.org/10.1371/journal.pntd.0003162.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Martinon F, Burns K, Tschopp J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of pro IL-beta. Mol Cell. 2002;10:417–26. https://doi.org/10.1016/s1097-2765(02)00599-3.

    Article  CAS  PubMed  Google Scholar 

  9. Siqueira IM, Wüthrich M, Li M, Wang H, Las-Casas LO, de Castro RJA, et al. Early immune response against Fonsecaea pedrosoi requires Dectin-2-mediated Th17 activity, whereas Th1 response, aided by Treg cells, is crucial for fungal clearance in later stage of experimental chromoblastomycosis. PLoS Negl Trop Dis. 2020;14(6):e0008386. https://doi.org/10.1371/journal.pntd.0008386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Li W, Kashiwamura S, Ueda H, Sekiyama A, Okamura H. Protection of CD8+ T cells from activation-induced cell death by IL-18. J Leukoc Biol. 2007;82(1):142–51. https://doi.org/10.1189/jlb.0706431.

    Article  CAS  PubMed  Google Scholar 

  11. Bueter CL, Lee CK, Rathinam VAK, Healy GJ, Taron CH, Specht CA, Levitz SM. Chitosan but not chitin activates the inflammasome by a mechanism dependent upon phagocytosis. J Biol Chem. 2011;286(41):35447–55. https://doi.org/10.1074/jbc.M111.274936.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Marty-Roix R, Vladimer GI, Pouliot K, Weng D, Buglione-Corbett R, West K, et al. Identification of QS-21 as an inflammasome-activating molecular component of saponin adjuvants. J Biol Chem. 2016;291(3):1123–36. https://doi.org/10.1074/jbc.M115.683011.

    Article  CAS  PubMed  Google Scholar 

  13. Wallace HL, Wang L, Gardner CL, Corkum CP, Grant MD, Hirasawa K, Russell RS. Crosstalk between pyroptosis and apoptosis in hepatitis C virus-induced cell death. Front Immunol. 2022;13:788138. https://doi.org/10.3389/fimmu.2022.788138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ivanov K, Garanina E, Rizvanov A, Khaiboullina S. Inflammasomes as targets for adjuvants. Pathogens. 2020;9(4):252. https://doi.org/10.3390/pathogens9040252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Martynova E, Rizvanov A, Urbanowicz RA, Khaiboullina S. Inflammasome contribution to the activation of Th1, Th2, and Th17 immune responses. Front Microbiol. 2022;13:851835. https://doi.org/10.3389/fmicb.2022.851835.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ketelut-Carneiro N, Silva GK, Rocha FA, Milanezi CM, Cavalcanti-Neto FF, Zamboni DS, et al. IL-18 triggered by the NLRP3 inflammasome induces host innate resistance in a pulmonary model of fungal infection. J Immunol. 2015;194:4507–17. https://doi.org/10.4049/jimmunol.1402321.

    Article  CAS  PubMed  Google Scholar 

  17. Van de Veerdonk FL, Joosten LAB, Shaw PJ, Smeekens SP, Malireddi RKS, Van der Meer JWM, et al. The inflammasome drives protective Th1 and Th17 cellular responses in disseminated candidiasis. Eur J Immunol. 2011;41(8):2260–8. https://doi.org/10.1002/eji.201041226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hise AG, Tomalka J, Ganesan S, Patel K, Hall BA, Brown GD, et al. An essential role for the NLRP3 inflammasome in host defense against the human fungal pathogen Candida albicans. Cell Host Microbe. 2009;5:487–97. https://doi.org/10.1016/j.chom.2009.05.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kapplusch F, Schulze F, Rabe-Matschewsky S, Russ S, Herbig M, Heymann MC, et al. CASP1 variants influence subcellular caspase-1 localization, pyroptosome formation, pro-inflammatory cell death and macrophage deformability. Clin Immunol. 2019;208:108232. https://doi.org/10.1016/j.clim.2019.06.008.

    Article  CAS  PubMed  Google Scholar 

  20. Cookson BT, Brennan MA. Pro-inflammatory programmed cell death. Trends Microbiol. 2001;9:113–4. https://doi.org/10.1016/s0966-842x(00)01936-3.

    Article  CAS  PubMed  Google Scholar 

  21. Lamkanfi M, Dixit VM. Mechanisms and functions of inflammasomes. Cell. 2014;157:1013–22. https://doi.org/10.1016/j.cell.2014.04.007.

    Article  CAS  PubMed  Google Scholar 

  22. Man SM, Karki R, Kanneganti TD. Molecular mechanisms and functions of pyroptosis, inflammatory caspases and inflammasomes in infectious diseases. Immunol Rev. 2017;277(1):61–75. https://doi.org/10.1111/imr.12534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dhuriya YK, Sharma D. Necroptosis: a regulated inflammatory mode of cell death. J Neuroinflammation. 2018;15:199. https://doi.org/10.1186/s12974-018-1235-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Guo H, Kaiser WJ, Mocarski ES. Manipulation of apoptosis and necroptosis signaling by herpesviruses. Med Microbiol Immunol. 2015;204:439–48. https://doi.org/10.1007/s00430-015-0410-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shlomovitz I, Zargrian S, Gerlic M. Mechanisms of RIPK3-induced inflammation. Immunol Cell Biol. 2017;95:166–72. https://doi.org/10.1038/icb.2016.124.

    Article  CAS  PubMed  Google Scholar 

  26. Lamkanfi M, Malireddi RKS, Kanneganti T-D. Fungal zymosan and mannan activate the cryopyrin inflammasome. J Biol Chem. 2009;284:20574–81. https://doi.org/10.1074/jbc.M109.023689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Vonk AG, Netea MG, van Krieken JH, Iwakura Y, van der Meer JWM, Kullberg BJ. Endogenous interleukin (IL)–1α and IL-1β Are crucial for host defense against disseminated candidiasis. J Infect Dis. 2006;193:1419–26. https://doi.org/10.1086/503363.

    Article  CAS  PubMed  Google Scholar 

  28. Karki R, Man SM, Malireddi RKS, Gurung P, Vogel P, Lamkanfi M, et al. Concerted activation of the AIM2 and NLRP3 inflammasomes orchestrates host protection against Aspergillus infection. Cell Host Microbe. 2015;17:357–68. https://doi.org/10.1016/j.chom.2015.01.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Briard B, Malireddi RKS, Kanneganti T-D. Role of inflammasomes/pyroptosis and PANoptosis during fungal infection. PLoS Pathog. 2021;17(3):e1009358. https://doi.org/10.1371/journal.ppat.1009358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Castro RJA, Siqueira IM, Jerônimo MS, Basso AMM, Veloso PHH Jr, Magalhães KG, et al. The major chromoblastomycosis etiologic agent Fonsecaea pedrosoi activates the NLRP3 inflammasome. Front Immunol. 2017;8:1572. https://doi.org/10.3389/fimmu.2017.01572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Brito AC, Bittencourt MJS. Chromoblastomycosis: an etiological, epidemiological, clinical, diagnostic, and treatment update. An Bras Dermatol. 2018;93(4):495–506. https://doi.org/10.1590/abd1806-4841.20187321.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Silva AAL, Criado PR, Nunes RS, Kanashiro-Galo L, Seixas Duarte MI, Sotto MN, Pagliari C. Langerhans cells express IL-17A in the epidermis of chromoblastomycosis lesions. Biomed Hub. 2017;2(2):1–8. https://doi.org/10.1159/000477954.

    Article  Google Scholar 

  33. Joosten LA, Netea MG, Dinarello CA. Interleukin-1beta in innate inflammation, autophagy and immunity. Semin Immunol. 2013;25:416–24. https://doi.org/10.1016/j.smim.2013.10.018.

    Article  CAS  PubMed  Google Scholar 

  34. Dinarello CA, Novick D, Kim S, Kaplanski G. Interleukin-18 and IL-18 binding protein. Front Immunol. 2013;4:289. https://doi.org/10.3389/fimmu.2013.00289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Silva LM, Sousa JR, Hirai KE, Dias LB Jr, Furlaneto IP, Carneiro FRO, et al. The inflammasome in leprosy skin lesions: an immunohistochemical evaluation. Infect Drug Resist. 2018;11:2231–40. https://doi.org/10.2147/IDR.S172806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pontillo A, Laurentino W, Crovella S, Pereira AC. NLRP1 haplotypes associated with leprosy in Brazilian patients. Infect Genet Evol. 2013;19:274–9. https://doi.org/10.1016/j.meegid.2013.06.006.

    Article  CAS  PubMed  Google Scholar 

  37. Chavarría-Smith J, Vance RE. The NLRP1 inflammasomes. Immunol Rev. 2015;265(1):22–34. https://doi.org/10.1111/imr.12283.

    Article  CAS  PubMed  Google Scholar 

  38. Awad F, Assrawi E, Louvrier C, Jumeau C, Georgin-Lavialle S, Grateau G, et al. Inflammasome biology, molecular pathology and therapeutic implications. Pharmacol Ther. 2018;187:133–49. https://doi.org/10.1016/j.pharmthera.2018.02.011.

    Article  CAS  PubMed  Google Scholar 

  39. Evavold CL, Kagan JC. How inflammasomes inform adaptive immunity. J Mol Biol. 2018;430(2):217–37. https://doi.org/10.1016/j.jmb.2017.09.019.

    Article  CAS  PubMed  Google Scholar 

  40. Williams TJ, Gonzales-Huerta LE, Armstrong-James D. Fungal-induced programmed cell death. J Fungi (Basel). 2021;7:231. https://doi.org/10.3390/jof7030231.

    Article  CAS  PubMed  Google Scholar 

  41. Gong W, Shi Y, Ren J. Research progresses of molecular mechanism of pyroptosis and its related diseases. Immunobiology. 2020;225:151884. https://doi.org/10.1016/j.imbio.2019.11.019.

    Article  CAS  PubMed  Google Scholar 

  42. Tavares AH, Burgel PH, Bocca AL. Turning up the heat: inflammasome activation by fungal pathogens. PLoS Pathog. 2015;11:e1004948. https://doi.org/10.1371/journal.ppat.1004948.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wellington M, Koselny K, Sutterwala FS, Krysan DJ. Candida albicans triggers NLRP3-mediated pyroptosis in macrophages. Eukaryot Cell. 2014;13:329–40. https://doi.org/10.1128/EC.00336-13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lian H, Fang XL, Li Q, Liu S, Wei Q, Hua X, et al. NLRP3 inflammasome-mediated pyroptosis pathway contributes to the pathogenesis of Candida albicans keratitis. Front Med. 2022. https://doi.org/10.3389/fmed.2022.845129.

    Article  Google Scholar 

Download references

Acknowledgements

CP—Research productivity grant of National Council for scientific and Technological Development (CNPq).

Funding

The authors declare there is no funding to the research. CP receives a research productivity grant of National Council for Scientific and Technological Development (CNPq).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. CP: conceptualization, project administration, methodology, writing. LK-G: methodology, review. MNS: formal analysis, review.

Corresponding author

Correspondence to Carla Pagliari.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

Ethical approval was waived by the local Ethics Committee of University of São Paulo, Medical School in view of the retrospective nature of the study and all the procedures being performed were part of the routine care. The use of the material that constituted the casuistic was approved under the number 0317/11.

Additional information

Handling Editor: Anamelia Lorenzetti Bocca.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pagliari, C., Kanashiro-Galo, L. & Sotto, M.N. Inflammasome and Inflammatory Programmed Cell Death in Chromoblastomycosis. Mycopathologia 188, 63–70 (2023). https://doi.org/10.1007/s11046-022-00679-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11046-022-00679-w

Keywords

Navigation