Skip to main content
Log in

Color image sharpening based on local color statistics

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

This paper presents an effective color image sharpening method, which is based on local color statistics. First, the variance of a set of color samples is measured by a scalar that is computed based on the sum of distances of color vectors, whereas other studies usually treat a color variance as a 3D vector. This is because what a variance expresses is the degree of the deviation of the image (vector) signal from its mean, indicating that describing this degree of deviation by a scalar is reasonable. Then, the local scalar variance and mean vector are combined together to measure the change of color image signal from a pixel to its neighboring ones, and the polarity of the change is determined by the change of luminance. Finally, based on the measure of the change, an effective sharpening operator is developed. Experimental results show that the proposed method excellently sharpens different kinds of color images and at the same time preserves image chromaticity well, and outperforms other typical sharpening techniques in both objective assessment and visual evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Agaian, S. S., Silver, B., & Panetta, K. A. (2007). Transform coefficient histogram-based image enhancement algorithms using contrast entropy. IEEE Transactions on Image Processing, 16(3), 741–758.

    Article  MathSciNet  Google Scholar 

  • Alsam, A. (2010). Colour constant image sharpening. In International conference on pattern recognition (ICPR) (pp. 4545–4548).

  • Astola, J., Haavisto, P., & Neuvo, Y. (1990). Vector median filters. Proceedings of the IEEE, 78(4), 678–689.

    Article  Google Scholar 

  • Bahrami, K., & Kot, A. C. (2016). Efficient image sharpness assessment based on content aware total variation. IEEE Transactions on Multimedia, 18(8), 1568–1578.

    Article  Google Scholar 

  • Belyaev, A. (2013). Implicit image differentiation and filtering with applications to image sharpening. SIAM Journal on Imaging Sciences, 6(1), 660–679.

    Article  MathSciNet  MATH  Google Scholar 

  • Bettahar, S., Lambert, P., & Stambouli, A. B. (2014). Anisotropic color image denoising and sharpening. In IEEE conference on image processing (ICIP) (pp. 2669–2673).

  • Dai, F., Zheng, N., & Xue, J. (2008). Image smoothing and sharpening based on nonlinear diffusion equation. Signal Processing, 88(11), 2850–2855.

    Article  MATH  Google Scholar 

  • Deng, G. (2011). A generalized unsharp masking algorithm. IEEE Transactions on Image Processing, 20(5), 1249–1261.

    Article  MathSciNet  MATH  Google Scholar 

  • Fu, S. (2005). Fuzzy bidirectional flow for adaptive image sharpening. In IEEE international conference on image processing (ICIP) (pp. 917–920).

  • Fu, S., Ruan, Q., Wang, W., Gao, F., & Cheng, H. (2007). A feature-dependent fuzzy bidirectional flow for adaptive image sharpening. Neurocomputing, 70(4–6), 883–895.

    Article  Google Scholar 

  • Gonzalez, R., & Woods, R. (2008). Digital image processing (3rd ed.). Englewood Cliffs: Prentice Hall.

    Google Scholar 

  • Gupta, B., & Tiwari, M. (2016). A tool supported approach for brightness preserving contrast enhancement and mass segmentation of mammogram images using histogram modified grey relational analysis. Multidimensional Systems and Signal Processing. https://doi.org/10.1007/s11045-016-0432-1.

  • Hao, S., Pan, D., Guo, Y., Hong, R., & Wang, M. (2016). Image detail enhancement with spatially guided filters. Signal Processing, 120, 789–796.

    Article  Google Scholar 

  • Horiuchi, T., Watanabe, K., & Tominaga, S. (2007). Adaptive filtering for color image sharpening and denoising. In International conference on image analysis and processing workshops (pp. 187–192).

  • Jin, L., Xiong, C., & Liu, H. (2012). Improved bilateral filter for suppressing mixed noise in color images. Digital Signal Processing, 22(6), 903–912.

    Article  MathSciNet  Google Scholar 

  • Kau, L. J., & Lee, T. L. (2013). An HSV model-based approach for the sharpening of color images. In IEEE international conference on systems, man, and cybernetics (pp. 150–155).

  • Kim, Y. H., & Cho, Y. J. (2008). Feature and noise adaptive unsharp masking based on statistical hypotheses test. IEEE Transactions on Consumer Electronics, 54(2), 823–830.

    Article  Google Scholar 

  • Kou, F., Chen, W., Li, Z., & Wen, C. (2015). Content adaptive image detail enhancement. IEEE Signal Processing Letters, 22(2), 211–215.

    Article  Google Scholar 

  • Lee, C., Kim, C.-S., & Lee, C. (2013). Contrast enhancement based on layered difference representation of 2D histograms. IEEE Transactions on Image Processing, 22(12), 5372–5384.

    Article  Google Scholar 

  • Li, L., Lin, W., Wang, X., Yang, G., Bahrami, K., & Kot, A. C. (2016). No-reference image blur assessment based on discrete orthogonal moments. IEEE Transactions on Cybernetics, 46(1), 39–50.

    Article  Google Scholar 

  • Likforman-Sulem, L., Darbon, J., & Smith, E. H. B. (2011). Enhancement of historical printed document images by combining total variation regularization and non-local means filtering. Image and Vision Computing, 29(5), 351–363.

    Article  Google Scholar 

  • Lukac, R., Smolka, B., & Plataniotis, K. N. (2007). Sharpening vector median filters. Signal Processing, 87(9), 2085–2099.

    Article  MATH  Google Scholar 

  • Ma, T., Li, L., Ji, S., Wang, X., Tian, Y., Abdullah, A.-D., et al. (2014). Optimized Laplacian image sharpening algorithm based on graphic processing unit. Physica A: Statistical Mechanics and its Applications, 416, 400–412.

    Article  Google Scholar 

  • Matz, S. C., & de Figueiredo, R. J. P. (2006). A nonlinear image contrast sharpening approach based on Munsell’s scale. IEEE Transactions on Image Processing, 15(4), 900–909.

    Article  Google Scholar 

  • Mittal, A., Soundararajan, R., & Bovik, A. C. (2013). Making a “completely blind” image quality analyzer. IEEE Signal Processing Letters, 20(3), 209–212.

    Article  Google Scholar 

  • Plataniotis, K. N., & Venetsanopoulos, A. N. (2000). Color image processing and applications. Berlin: Springer.

    Book  Google Scholar 

  • Polesel, A., Ramponi, G., & Mathews, V. J. (2000). Image enhancement via adaptive unsharp masking. IEEE Transactions on Image Processing, 9(3), 505–510.

    Article  Google Scholar 

  • Ramponi, G. (1998). A cubic unsharp masking technique for contrast enhancement. Signal Processing, 67(2), 211–222.

    Article  MATH  Google Scholar 

  • Schavemaker, J. G. M., Reinders, M. J. T., Gerbrands, J. J., & Backer, E. (2000). Image sharpening by morphological filtering. Pattern Recognition, 33(6), 997–1012.

    Article  Google Scholar 

  • Stark, J. A. (2000). Adaptive image contrast enhancement using generalizations of histogram equalization. IEEE Transactions on Image Processing, 9(5), 889–896.

    Article  Google Scholar 

  • Suman, S., & Jha, R. K. (2017). A new technique for image enhancement using digital fractional-order Savitzky–Golay differentiator. Multidimensional Systems and Signal Processing, 28(2), 709–733.

    Article  MATH  Google Scholar 

  • Tomasi, C., & Manduchi, R. (1998). Bilateral filtering for gray and color images. In IEEE conference on computer vision (ICCV) (pp. 839–846).

  • Wilscy, M., & Nair, M. S. (2008). A new method for sharpening color images using fuzzy approach. In A. Campilho & M. Kamel (Eds.), International conference on image analysis and recognition. Lecture notes in computer science (vol. 5112, pp. 65–74). Springer.

  • Wong, C. Y., Jiang, G., Rahman, M. A., Liu, S., Lin, S. C.-F., Kwok, N., et al. (2016). Histogram equalization and optimal profile compression based approach for colour image enhancement. Journal of Visual Communication and Image Representation, 38, 802–813.

    Article  Google Scholar 

  • Zhang, L., Zhang, L., & Bovik, A. C. (2015). A feature-enriched completely blind image quality evaluator. IEEE Transactions on Image Processing, 24(8), 2579–2591.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (61370181 and 61370179).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Jin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, L., Jin, M., Zhu, Z. et al. Color image sharpening based on local color statistics. Multidim Syst Sign Process 29, 1819–1837 (2018). https://doi.org/10.1007/s11045-017-0532-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-017-0532-6

Keywords

Navigation