Skip to main content
Log in

A robust noise removal algorithm with consideration of contextual information

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

This paper analyzes an image noise model of additive positive and negative impulses that often appear in practical applications. Based on the characteristic that any pixel in an undisturbed image is similar to its neighbors, a local pixel correlation coefficient is proposed. For a pixel, based on the number of similar pixels in its neighborhood, the probability of whether it is noisy or normal can be accurately calculated. An adaptive masking weighted mean filter with consideration of contextual information is proposed to filter noise while retaining the edge details of the image. The proposed algorithm does not require any initial parameters or threshold values to be set. Experimental results show that the proposed algorithm is applicable to the proposed noise model and that the proposed noise filtering is significantly better than that of existing algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aizenberg, I., & Butakoff, C. (2004). Effective impulse detectors based on rank-order criteria. IEEE Signal Processing Letters, 11(3), 363–366.

    Article  Google Scholar 

  • Akkoul, S., Harba, R., & Ledee, R. (2014). An image dependent stopping method for iterative denoising procedures. Multidimensional Systems and Signal Processing, 25(3), 611–620.

    Article  MathSciNet  Google Scholar 

  • Awad, A. S. (2010). Cascade window-based procedure for impulse noise removal in heavily corrupted images. Journal of Electronic Imaging, 19(1), 1–10.

    Article  Google Scholar 

  • Brownrigg, D. (1984). The weighted median filter. Communications of the ACM, 27(8), 807–818.

  • Chan, R., Hu, C., & Nikolova, M. (2004). An iterative procedure for removing random-valued impulse noise. IEEE Signal Processing Letters, 11(12), 921–924.

    Article  Google Scholar 

  • Chandler, D. M., & Hemami, S. S. (2007). VSNR: A wavelet-based visual signal-to-noise ratio for natural images. IEEE Transactions on Image Processing, 16(9), 2284–2298.

    Article  MathSciNet  Google Scholar 

  • Dong, Y., Chan, R., & Xu, S. (2007). A detection statistic for random-valued impulse noise. IEEE Transactions on Image Processing, 16(4), 1112–1120.

    Article  MathSciNet  Google Scholar 

  • Eng, H. L., & Ma, K. K. (2001). Noise adaptive soft-switching median filter. IEEE Transactions on Image Processing, 10(2), 242–251.

    Article  MATH  Google Scholar 

  • Garnett, R., Huegerich, T., Chui, C., & He, W. J. (2005). A universal noise removal algorithm with an impulse detector. IEEE Transactions on Image Processing, 14(11), 1747–1754.

    Article  Google Scholar 

  • Hwang, H., & Haddad, R. A. (1995). Adaptive median filters: New algorithms and results. IEEE Transactions on Image Processing, 4(4), 499–502.

    Article  Google Scholar 

  • Jin, L., Xiong, C., & Li, D. (2008). Adaptive center-weighted median filter. Journal of Huaz Hong University of Science & Technology, 36(8), 9–12.

    Google Scholar 

  • Ko, S. J., & Lee, S. J. (1991). Center weighted median filters and their applications to image enhancement. IEEE Transactions on Circuits and Systems, 15, 984–993.

    Article  Google Scholar 

  • Li, S. Q., Zhang, Y., Sun, G. M., & Lv, N. (2008). Improved filtering algorithm for removing salt and pepper noise. Computer Engineering, 34(10), 171–175.

    Google Scholar 

  • MeTriXMuX Visual Quality Assessment Package README (v. 1.1). (2014). http://foulard.ece.cornell.edu/gaubatz/metrix_mux/.

  • Sheikh, H. R., & Bovik, A. C. (2006). Image information and visual quality. IEEE Transactions on Image Processing, 15(2), 430–444.

    Article  Google Scholar 

  • Sheikh, H. R., Bovik, A. C., & Vesiana, G. (2005). An information fidelity criterion for image quality assessment using natural scene statistics. IEEE Transactions on Image Processing, 14(12), 2117–2128.

    Article  Google Scholar 

  • Shekar, D., & Srikanth, R. (2011). Removal of high density salt and pepper noise in noisy images using decision based unsymmetric trimmed median filter. International Journal of Computer Trends and Technology, 2(1), 109–114.

    Google Scholar 

  • Srinivasan, K. S., & Ebenezer, D. (2007). A new fast and efficient decision-based algorithm for removal of high-density impulse noises. IEEE Signal Process Letter, 14(3), 189–192.

    Article  Google Scholar 

  • Sun, T., Gabbouj, M., & Neuvo, Y. (1994). Center weighted median filters: Some properties and their applications in image processing. Signal Processing, 35(3), 213–229.

    Article  MATH  Google Scholar 

  • Sun, T., & Neuvo, Y. (1994). Detail-preserving median based filters in image processing. Pattern Recognition Letters, 15, 341–347.

    Article  Google Scholar 

  • Tukey, J. W. (1974). Nonlinear (nonsuperposable) methods for smoothing data. In Proceedings of electronic and aerospace systems conference (pp. 673–681).

  • Wang, S. S., & Wu, C. H. (2009). A new impulse detection and filtering method for removal of wide range impulse noises. Pattern Recognition, 42, 2194–2202.

    Article  MATH  Google Scholar 

  • Wang, Z., & Bovik, A. C. (2002). A universal image quality index. IEEE Signal Processing Letters, 9(3), 81–84.

    Article  Google Scholar 

  • Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004). Image quality assessment: From error visibility to structural similarity. IEEE Transactions on Image Processing, 13(4), 600–612.

    Article  Google Scholar 

  • Xing, C. J., Wang, S. J., Deng, H. J., & Luo, Y. J. (2001). A new filtering algorithm based on extremum and median value. Journal of Image and Graphics, 6(6), 533–536.

    Google Scholar 

  • Xu, J. L., Feng, X. C., & Hao, Y. (2014). A coupled variational model for image denoising using a duality strategy and split Bregman. Multidimensional Systems and Signal Processing, 25(1), 83–94.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuan-Yu Chang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, QQ., Chang, CY. A robust noise removal algorithm with consideration of contextual information. Multidim Syst Sign Process 27, 179–200 (2016). https://doi.org/10.1007/s11045-014-0298-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-014-0298-z

Keywords

Navigation