Skip to main content

Noise Density Range Sensitive Mean-Median Filter for Impulse Noise Removal

  • Conference paper
  • First Online:
Innovations in Computational Intelligence and Computer Vision

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1189))

Abstract

A new noise density range sensitive algorithm for the restoration of images that are corrupted by impulse noise is proposed. The proposed algorithm replaces the noisy pixel by mean, median or pre-processed values based on noise density of the image. The proposed filter uses a unique approach for recovering images corrupted with very high noise densities (over 85%). It also provides significantly better image quality for different noise densities (10–90%). Simulation results show that the proposed filter outperforms in comparison with the other nonlinear filters. At very high noise densities, the proposed filter provides better visual representation with 6.5% average improvement in peak signal-to-noise ratio value when compared to state-of-the-art filters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C. Gonzalez Rafael, E. Woods Richard, Digital image processing, 2nd edn. (Prentice Hall, Englewood Cliffs NJ, 2002)

    Google Scholar 

  2. Mafi, M.; Martin, H.; Cabrerizo, M.; Andrian, J.; Barreto, A.; Adjouadi, M., “A comprehensive survey on impulse and Gaussian denoising filters for digital images”. Signal Process, 2018

    Google Scholar 

  3. K.M. Singh, P.K. Bora, S.B. Singh, Rank-ordered mean filter for removal of impulse noise from images, in IEEE International Conference on Industrial Technology (2002)

    Google Scholar 

  4. I. Pitas, A.N. Venetsanopoulos, Nonlinear Digital Filters Principles and Applications (Kluwer, Norwell, MA, 1990)

    Book  Google Scholar 

  5. S. Zhang, M.A. Karim, A new impulse detector for switching median filters. IEEE Signal Process. Lett. 9(11), 360–363 (2002)

    Article  Google Scholar 

  6. K.S. Srinivasan, D. Ebenezer, A New Fast and Efficient Decision- Based Algorithm for Removal of High-Density Impulse Noises. IEEE Signal Process. Lett. 14(3), 189–192 (2007)

    Article  Google Scholar 

  7. K. Aiswarya, V. Jayaraj, D. Ebenezer, A new and efficient algorithm for the removal of high density salt and pepper noise in images and videos, in Proceedings in Inter Conference on Computer Modeling and Simulation (2010), pp. 409–413

    Google Scholar 

  8. S. Deivalakshmi, P. Palanisamy, Improved tolerance based selective arithmetic mean filter for detection and removal of impulse noise, in Proceedings of 5th IEEE International Conference on Industrial and Information Systems (ICIIS) (2010), pp. 309–13

    Google Scholar 

  9. S. Esakkirajan, T. Veerakumar, A.N. Subramanyam, C.H. Premchand, Removal of high density salt and pepper noise through modified decision based un-symmetric trimmed median filter. IEEE Signal Process. 18(5), 287–290 (2011)

    Article  Google Scholar 

  10. V.R. Vijaykumar, G. Santhana Mari, D. Ebenezer, Fast switching based median-mean filter for high density salt and pepper noise removal. AEU Int. J. Electr. Commun. 68(12), 1145–1155 (2014)

    Article  Google Scholar 

  11. T. Veerakumar, S. Esakkirajan, I. Vennila, Recursive cubic spline interpolation filter approach for the removal of high density salt-and-pepper noise. Int. J. Sig. Image Video Process. 8(1), 159–168 (2014)

    Article  Google Scholar 

  12. C.T. Lu, Y.Y. Chen, L.L. Wang, C.F. Chang, Removal of salt-and pepper noise in corrupted image using three-values-weighted approach with variable-size window. Patt. Recogn. Lett. 80, 188–199 (2016)

    Article  Google Scholar 

  13. Osama S. Faragallah, Hani M. Ibrahem, Adaptive switching weighted median filter framework for suppressing salt-and-pepper noise. AEU—Int. J. Electron. Commun. 70(8), 1034–1040 (2016)

    Article  Google Scholar 

  14. U. Erkan et al., Different applied median filter in salt and pepper noise. Comput. Electr. Eng. (2018). https://doi.org/10.1016/j.compeleceng.2018.01.019

    Article  Google Scholar 

  15. Z. Wang, A.C. Bovik, H.R. Sheikh, E.P. Simoncelli, Image quality assessment: from error measurement to structural similarity (IEEE Trans, Image Processing, 2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bharat Garg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sohi, P.J.S., Sharma, N., Garg, B., Arya, K.V. (2021). Noise Density Range Sensitive Mean-Median Filter for Impulse Noise Removal. In: Sharma, M.K., Dhaka, V.S., Perumal, T., Dey, N., Tavares, J.M.R.S. (eds) Innovations in Computational Intelligence and Computer Vision. Advances in Intelligent Systems and Computing, vol 1189. Springer, Singapore. https://doi.org/10.1007/978-981-15-6067-5_18

Download citation

Publish with us

Policies and ethics