Skip to main content
Log in

Non-smooth numerical solution for Coulomb friction, rolling and spinning resistance of spheres applied to flexible multibody system dynamics

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

The general motion of a sphere in a mechanism in contact with a rigid planar surface under rolling, sliding and spinning friction is studied in the context of non-smooth contact dynamics. The equations of motion are solved by the non smooth generalized–\(\alpha \) implicit time integration scheme, where the position and velocity level constraints are satisfied exactly without requiring to define any particular value for a penalty parameter. The geometrical properties of the spheres are described by a rigid-body formulation with translational and rotational degrees of freedom. The robustness and the performance of the proposed methodology is demonstrated by different examples, including both flexible and/or rigid elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Acary, V.: Projected event-capturing time-stepping schemes for nonsmooth mechanical systems with unilateral contact and Coulomb’s friction. Comput. Methods Appl. Mech. Eng. 256, 224–250 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Acary, V., Bourrier, F.: Coulomb friction with rolling resistance as a cone complementarity problem. Eur. J. Mech. A, Solids 85, 104046 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  3. Acary, V., Peŕignon, F.: An introduction to SICONOS INRIA. Technical report, INRIA (2007)

  4. Ahmadi, A.M., Petersen, D., Howard, C.: A nonlinear dynamic vibration model of defective bearings. The importance of modeling the finite size of rolling elements. Mech. Syst. Signal Process. 52–53, 309–326 (2015)

    Article  Google Scholar 

  5. Akhadkar, N., Acary, V., Brogliato, B.: 3D revolute joint with clearance in multibody systems. In Computational Kinematics, Mechanisms and Machine Science, vol. 42, pp. 249–282 (2018)

    Google Scholar 

  6. Alart, P., Curnier, A.: A mixed formulation for frictional contact problems prone to Newton like solution methods. Comput. Methods Appl. Mech. Eng. 92(3), 353–375 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  7. Algoryx: (2020). https://www.algoryx.se

  8. Annavarapu, C., Settgast, R.R., Johnson, S.M., Fu, P., Herbold, E.B.: A weighted Nitsche stabilized method for small-sliding contact on frictional surfaces. Comput. Methods Appl. Mech. Eng. 283, 763–781 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bauchau, O.A.: Flexible Multibody Dynamics, 6th edn. Springer, New York (2011)

    Book  MATH  Google Scholar 

  10. Brüls, O., Acary, V., Cardona, A.: Simultaneous enforcement of constraints at position and velocity levels in the nonsmooth generalized-\(\alpha \) scheme. Comput. Methods Appl. Mech. Eng. 281, 131–161 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Burns, S.J., Piiroinen, P.T., Hanley, K.: Critical time-step for a DEM simulations of dynamic systems using a hertzian contact model. Int. J. Numer. Methods Eng. 119(5), 432–451 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  12. Capobianco, G., Harsch, J., Eugster, S.R., Leine, R.I.: A nonsmooth generalized-alpha method for mechanical systems with frictional contact. Int. J. Numer. Methods Eng. 122(22), 6497–6526 (2021)

    Article  MathSciNet  Google Scholar 

  13. Cardona, A.: Flexible three dimensional gear modelling in mechanism analysis. Eur. J. Comput. Mech. 4, 663–691 (1995)

    MATH  Google Scholar 

  14. Cardona, A., Géradin, M., Doan, D.B.: Rigid and flexible joint modelling in multibody dynamics using finite elements. Comput. Methods Appl. Mech. Eng. 89(1–3), 395–418 (1991)

    Article  Google Scholar 

  15. Cardona, A., Klapka, I., Géradin, M.: Design of a new finite element programming environment. Eng. Comput. 11, 365–381 (1994)

    Article  MATH  Google Scholar 

  16. Cavalieri, F.J., Cardona, A.: Non-smooth model of a frictionless and dry three-dimensional revolute joint with clearance for multibody system dynamics. Mech. Mach. Theory 121, 335–354 (2018)

    Article  Google Scholar 

  17. Chung, J., Hulbert, G.M.: A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-\(\alpha \) method. J. Appl. Mech. 60(2), 371–375 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  18. Codina, R., Cervera, M., Oñate, E.: A penalty finite element method for non-Newtonian creeping flows. Int. J. Numer. Methods Eng. 36(8), 1395–1412 (1993)

    Article  MATH  Google Scholar 

  19. Contensou, P.: Couplage entre frottement de glissement et frottement de pivotement dans la théorie de la toupie. In: Ziegler, H. (ed.) Kreiselprobleme und Gyrodynamics, IUTAM Symposium Celerina, pp. 201–216. Springer, Berlin (1963)

    Chapter  Google Scholar 

  20. Cosimo, A., Cavalieri, F.J., Cardona, A., Brüls, O.: On the adaptation of local impact laws for multiple impact problems. Nonlinear Dyn. 102, 1997–2016 (2020)

    Article  MATH  Google Scholar 

  21. Cosimo, A., Galvez, J., Cavalieri, F.J., Cardona, A., Brüls, O.: A robust nonsmooth generalized-\(\alpha \) scheme for flexible systems with impacts. Multibody Syst. Dyn. 48, 127–149 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  22. Cosimo, A., Cavalieri, F.J., Galvez, J., Cardona, A., Brüls, O.: A general purpose formulation for nonsmooth dynamics with finite rotations: application to the woodpecker toy. J. Comput. Nonlinear Dyn. 16(10–10), 031001 (2021)

    Article  Google Scholar 

  23. Coulomb, C.A.: Théorie des machines simples, en ayant égard au frottement de leurs parties, et à la roideur des cordages. Mémoire de Mathématique et de Physique, Paris, France (1785)

    Google Scholar 

  24. Cundall, P.A., Strack, O.D.L.: A discrete numerical model for granular assemblies. Geotechnique 29, 47–65 (1979)

    Article  Google Scholar 

  25. De Saxcé, G., Feng, Z.Q.: New inequality and functional for contact with friction: the implicit standard material approach. Mech. Struct. Mach. 19(3), 301–325 (1991)

    Article  MathSciNet  Google Scholar 

  26. Dubois, F., Jean, M., Renouf, M., Mozul, R., Martin, A., Bagneris, M.: LMGC90. In: Proceedings of the 10eme Colloque National en Calcul des Structures (CSMA), Giens, France, May 2011 (2011)

    Google Scholar 

  27. Estrada, N., Taboada, A., Radjai, F.: Shear strength and force transmission in granular media with rolling resistance. Phys. Rev. E 78, 021301 (2008)

    Article  Google Scholar 

  28. Estrada, N., Azéma, E., Radjai, F., Taboada, A.: Identification of rolling resistance as a shape parameter in sheared granular media. Phys. Rev. E 84, 011306 (2011)

    Article  Google Scholar 

  29. Flores, P., Leine, R., Glocker, C.: Modeling and analysis of planar rigid multibody systems with translational clearance joints based on the non-smooth dynamics approach. Multibody Syst. Dyn. 23(2), 165–190 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Flores, P., Leine, R., Glocker, C.: Modeling and analysis of rigid multibody systems with translational clearance joints based on the nonsmooth dynamics approach. In: Arczewski, K., Blajer, W., Fraczek, J., Wojtyra, M. (eds.) Multibody Dynamics: Computational Methods and Applications (2011)

    MATH  Google Scholar 

  31. Galvez, J., Cavalieri, F.J., Cosimo, A., Brüls, O., Cardona, A.: A nonsmooth frictional contact formulation for multibody system dynamics. Int. J. Numer. Methods Eng. 121(16), 3584–3609 (2020)

    Article  MathSciNet  Google Scholar 

  32. Géradin, M., Cardona, A.: Flexible Multibody Dynamics: A Finite Element Approach. Wiley, New York (2001)

    Google Scholar 

  33. Glocker, C.: An introduction to impacts. In: Haslinger, J., Stavroulakis, G.E. (eds.) Nonsmooth Mechanics of Solids, pp. 45–101. Springer, Vienna (2006)

    Chapter  Google Scholar 

  34. Hartenberg, R., Denavit, J.: Kinematic Synthesis of Linkages, 1st edn. McGraw-Hill, New York (1964)

    MATH  Google Scholar 

  35. Hersey, M.D.: Rigid body impact with moment of rolling friction. J. Lubr. Technol. 91(2), 260–263 (1969)

    Article  Google Scholar 

  36. Heyn, T., Mazhar, H., Pazouki, A., Melanz, D., Seidl, A., Madsen, J., Bartholomew, A., Negrut, D., Lamb, D., Tasora Chrono, A.: A parallel physics library for rigid-body, flexible-body, and fluid dynamics. Mech. Sci. 4, 49–64 (2013)

    Article  Google Scholar 

  37. Huang, J., Vicente da Silva, M., Krabbenhoft, K.: Three-dimensional granular contact dynamics with rolling resistance. Comput. Geotech. 49, 289–298 (2013)

    Article  Google Scholar 

  38. Irazabal, J., Salazar, F., Oñate, E.: Numerical modelling of granular materials with spherical discrete particles and the bounded rolling friction model. Application to railway ballast. Comput. Geotech. 85(220), 220–229 (2017)

    Article  Google Scholar 

  39. Kadau, D., Bartels, G., Brendel, L., Wolf, D.E.: Pore stabilization in cohesive granular systems. Phase Transit. 76(4–5), 315–331 (2003)

    Article  Google Scholar 

  40. Lacoursière, C.: Ghosts and machines: regularized variational methods for interactive simulations of multibodies with dry frictional contacts. Computing science, Umea University (2007)

  41. Le Saux, C., Leine, R.I., Glocker, C.: Dynamics of a rolling disk in the presence of dry friction. J. Nonlinear Sci. 15(1), 27–61 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  42. Leine, R.I.: Experimental and theoretical investigation of the energy dissipation of a rolling disk during its final stage of motion. Arch. Appl. Mech. 79, 1063–1082 (2009)

    Article  MATH  Google Scholar 

  43. Leine, R.I., Glocker, C.: A set-valued force law for spatial Coulomb–Contensou friction. Eur. J. Mech. A, Solids 22(2), 193–216 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  44. Lens, E.V., Cardona, A.: A nonlinear beam element formulation in the framework of an energy preserving time integration scheme for constrained multibody systems dynamics. Comput. Struct. 86(1), 47–63 (2008)

    Article  Google Scholar 

  45. Liu, J.-P., Shu, X.-B., Kanazawa, H., Imaoka, K., Mikkola, A., Ren, G.-X.: A model order reduction method for the simulation of gear contacts based on arbitrary Lagrangian Eulerian formulation. Comput. Methods Appl. Mech. Eng. 338, 68–96 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  46. Liu, Y., Wang, W., Qing, T., Zhang, Y., Liang, H., Zhang, S.: The effect of lubricant temperature on dynamic behavior in angular contact ball bearings. Mech. Mach. Theory 149, 103832 (2020)

    Article  Google Scholar 

  47. Ma, D., Liu, C., Zhao, Z., Zhang, H.: Rolling friction and energy dissipation in a spinning disc. Proc. R. Soc. A, Math. Phys. Eng. Sci., 470(2169), 20140191, 1–22 (2014)

    MATH  Google Scholar 

  48. Marghitu, D.B., Stoenescu, E.D.: Rigid body impact with moment of rolling friction. Nonlinear Dyn. 50, 597–608 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  49. Marques, F., Flores, P., Claro, J.C.P., Lankarani, H.M.: Modeling and analysis of friction including rolling effects in multibody dynamics: a review. Multibody Syst. Dyn. 45, 223–224 (2019)

    Article  MathSciNet  Google Scholar 

  50. Miler, D., Hoić, M.: Optimisation of cylindrical gear pairs: a review. Mech. Mach. Theory 156, 104156 (2021)

    Article  Google Scholar 

  51. Mylapilli, H., Jain, A.: Complementarity techniques for minimal coordinate contact dynamics. J. Comput. Nonlinear Dyn. 12(2), 021004 (2016)

    Article  Google Scholar 

  52. Negrut, D., Serban, R., Tasora, A.: Posing multibody dynamics with friction and contact as a differential complementarity problem. J. Comput. Nonlinear Dyn. 13(1), 014503 (2018)

    Article  Google Scholar 

  53. Neto, G.A., Pimenta, P., Wriggers, P.: Contact between spheres and general surfaces. Comput. Methods Appl. Mech. Eng. 328, 686–716 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  54. Pietrzak, G., Curnier, A.: Large deformation frictional contact mechanics: continuum formulation and augmented Lagrangian treatment. Comput. Methods Appl. Mech. Eng. 177(3), 351–381 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  55. Song, N., Peng, H., Kan, Z., Chen, B.: A novel nonsmooth approach for flexible multibody systems with contact and friction in 3D space. Nonlinear Dyn. 102(3), 1375–1408 (2020)

    Article  Google Scholar 

  56. Studer, C.: Numerics of Unilateral Contacts and Friction: Modeling and Numerical Time Integration in Non-smooth Dynamics, 1st edn. Lecture Notes in Applied and Computational Mechanics, vol. 47. Springer, Berlin (2009)

    Book  MATH  Google Scholar 

  57. Stupkiewicz, S., Lengiewicz, J., Korelc, J.: Sensitivity analysis for frictional contact problems in the augmented Lagrangian formulation. Comput. Methods Appl. Mech. Eng. 199, 2165–2176 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  58. Tasora, A., Anitescu, M.: A convex complementarity approach for simulating large granular flows. J. Comput. Nonlinear Dyn. 5(3), 031004 (2010)

    Article  Google Scholar 

  59. Tasora, A., Anitescu, M.: A complementarity-based rolling friction model for rigid contacts. Proc. Eng. 48(7), 1643–1659 (2013)

    MathSciNet  MATH  Google Scholar 

  60. Trinkle, J.C.: Formulation of multibody dynamics as complementarity problems (2003). ASME Paper No. DETC2003/VIB-48342

  61. Yao, T., Wang, L., Liu, X., Huang, Y.: Multibody dynamics simulation of thin-walled four-point contact ball bearing with interactions of balls, ring raceways and crown-type cage. Multibody Syst. Dyn. 48(3), 337–372 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  62. Zhou, Y.C., Wright, B.D., Yang, R.Y., Xu, B.H., Yu, A.B.: Rolling friction in the dynamic simulation of sandpile formation. Phys. A, Stat. Mech. Appl. 269(2), 536–553 (1999)

    Article  Google Scholar 

  63. Zienkiewicz, O.C., Taylor, R.L., Zhu, J.Z.: The Finite Element Method: Its Basis and Fundamentals, 7th edn. Elsevier, Amsterdam (2013)

    MATH  Google Scholar 

Download references

Funding

This work received financial support from Consejo Nacional de Investigaciones Cientificas y Técnicas (CONICET), Universidad Nacional del Litoral, Agencia Nacional de Promoción Cientifica y Tecnológica (ANPCyT) PICT2015-1067, Universidad Tecnológica Nacional PID-UTN UTI4790TC, PID-UTN AMECAFE0008102TC and the M4 project funded by the Walloon Region (Pôle MecaTech), which are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

Algorithm 1
figure 17

Modified non-smooth GGL generalised-\(\alpha \) time integration scheme

Appendix B

Hessian matrix for sliding resistance at position level for the different contact conditions,

$$\begin{aligned} \varDelta \boldsymbol {F}_{S}^{p} = \textstyle\begin{cases} \begin{aligned} &\begin{Bmatrix} \boldsymbol{\mathit{0}} \\ -\frac{k_{p}^{2}}{p_{p}}\varDelta \nu _{N} \\ -\frac{k_{p}^{2}}{p_{p}}\varDelta \boldsymbol{\nu }_{T} \end{Bmatrix} \\ &\quad \xi _{N} < 0 \quad \text{Gap} \\ &\begin{Bmatrix} -\varDelta g_{N\boldsymbol {q}}^{T}\xi _{N} - g_{N \boldsymbol {q}}^{T}\varDelta \xi _{N} - \mu \varDelta \xi _{N} \boldsymbol {g}^{T}_{T\boldsymbol {q}}\boldsymbol{\tau }_{p} - \mu \xi _{N} \varDelta \boldsymbol {g}^{T}_{T\boldsymbol {q}} \boldsymbol{\tau }_{p}- \\ \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \mu \xi _{N} \boldsymbol {g}^{T}_{T \boldsymbol {q}}\varDelta \boldsymbol{\tau }_{p} \\ -k_{p} \varDelta g_{N} \\ \frac{k_{p}}{p_{p}}(-k_{p}\varDelta \boldsymbol{\nu }_{T} +\mu \varDelta \xi _{N} \boldsymbol{\tau }_{p} + \mu \xi _{N}\varDelta \boldsymbol{\tau }_{p}) \end{Bmatrix} \\ &\quad \|\boldsymbol{\xi }_{T}\| \geq \mu \xi _{N} \quad \text{Slip} \\ &\begin{Bmatrix} -\varDelta g_{N\boldsymbol {q}}^{T}\xi _{N} - g_{N \boldsymbol {q}}^{T}\varDelta \xi _{N} - \varDelta \boldsymbol {g}^{T}_{T \boldsymbol {q}}\boldsymbol{\xi }_{T} - \boldsymbol {g}^{T}_{T \boldsymbol {q}}\varDelta \boldsymbol{\xi }_{T} \\ -k_{p}\varDelta g_{N} \\ -k_{p}\varDelta \boldsymbol {g}_{T} \end{Bmatrix} \\ &\quad \|\boldsymbol{\xi }_{T}\| < \mu \xi _{N} \quad \text{Stick} \end{aligned} \end{cases}\displaystyle \end{aligned}$$
(55)

Hessian matrix for sliding resistance at velocity level for the different contact conditions,

$$\begin{aligned} \varDelta \boldsymbol {F}_{S}^{v} = \textstyle\begin{cases} \begin{aligned} &\begin{Bmatrix} \boldsymbol{\mathit{0}} \\ -\frac{k_{v}^{2}}{p_{v}}\varDelta \varLambda _{N} \\ -\frac{k_{v}^{2}}{p_{v}}\varDelta \boldsymbol{\varLambda }_{T} \\ 0 \\ \boldsymbol{\mathit{0}}\end{Bmatrix} &\sigma _{N} < 0 \quad \text{Gap} \\ &\begin{Bmatrix} - g_{N\boldsymbol {q}}^{T}\varDelta \sigma _{N} - \mu \varDelta \sigma _{N} \boldsymbol {g}^{T}_{T\boldsymbol {q}} \boldsymbol{\tau }_{v} - \mu \sigma _{N} \boldsymbol {g}^{T}_{T \boldsymbol {q}}\varDelta \boldsymbol{\tau }_{v} \\ -k_{v} \varDelta \mathring{g}_{N} \\ \frac{k_{v}}{p_{v}}(-k_{v}\varDelta \boldsymbol{\varLambda }_{T} + \mu \varDelta \sigma _{N}\boldsymbol{\tau }_{v} + \mu \sigma _{N}\varDelta \boldsymbol{\tau }_{v}) \\ 0 \\ \boldsymbol{\mathit{0}}\end{Bmatrix} & \|\boldsymbol{\sigma}_{T}\| \geq \mu \sigma _{N} \quad \text{Slip} \\ &\begin{Bmatrix} -g_{N\boldsymbol {q}}^{T}\varDelta \sigma _{N} - \boldsymbol {g}^{T}_{T \boldsymbol {q}}\varDelta \boldsymbol{\sigma}_{T} \\ -k_{v}\varDelta \mathring{g}_{N} \\ -k_{v}\varDelta \mathring{\boldsymbol{g}}_{T} \\ 0 \\ \boldsymbol{\mathit{0}}\end{Bmatrix} & \|\boldsymbol{\sigma}_{T}\| < \mu \sigma _{N} \quad \text{Stick} \end{aligned} \end{cases}\displaystyle \end{aligned}$$
(56)

Hessian matrix for rolling resistance at velocity level for the different contact conditions,

$$\begin{aligned} \varDelta \boldsymbol {F}^{v}_{R}(\dot{\boldsymbol{\varPhi }}) = \textstyle\begin{cases} \begin{aligned} & \begin{Bmatrix} \boldsymbol{0} \\ 0 \\ \boldsymbol{0} \\ 0 \\ -\frac{k_{v}^{2}}{p_{v}}\varDelta \boldsymbol{\chi }_{T} \end{Bmatrix} &\sigma _{N} < 0\\ & \begin{Bmatrix} \boldsymbol{0} \\ - \boldsymbol{\omega }_{T\boldsymbol {q}}^{T}\varDelta \boldsymbol{\eta }_{T} \\ \boldsymbol{0} \\ 0 \\ -k_{v}\varDelta \boldsymbol{\omega }_{T} \end{Bmatrix} & \quad \|\boldsymbol{\eta }_{T}\|< \rho \sigma _{N} \\ & \begin{Bmatrix} -\rho \varDelta \sigma _{N}\boldsymbol{\omega }_{T\boldsymbol {q}}^{T} \boldsymbol{\tau }_{TW}-\rho \sigma _{N}\boldsymbol{\omega }_{T \boldsymbol {q}}^{T}\varDelta \boldsymbol{\tau }_{TW} \\ 0 \\ \boldsymbol{0} \\ 0 \\ \frac{k_{v}}{p_{v}}\left [-k_{v} \varDelta \boldsymbol{\chi }_{T} + \rho \varDelta \sigma _{N} \boldsymbol{\tau }_{TW}+ \rho \sigma _{N}\varDelta \boldsymbol{\tau }_{TW}\right ] \end{Bmatrix} & \quad \|\boldsymbol{\eta }_{T}\|\geq \rho \sigma _{N}\end{aligned} \end{cases}\displaystyle \end{aligned}$$
(57)

Hessian matrix for spinning resistance at velocity level for the different contact conditions,

$$\begin{aligned} \varDelta \boldsymbol {F}^{v}_{D}= \textstyle\begin{cases} \begin{aligned} & \begin{Bmatrix} \boldsymbol{0} \\ 0 \\ \boldsymbol{0} \\ -\frac{k_{v}^{2}}{p_{v}}\varDelta \chi _{N} \\ \boldsymbol{0} \end{Bmatrix} &\sigma _{N} < 0\\ & \begin{Bmatrix} - \omega _{N\boldsymbol {q}}^{T} \varDelta \eta _{N} \\ 0 \\ \boldsymbol{0} \\ -k_{v}\varDelta \omega _{N} \\ \boldsymbol{0} \end{Bmatrix} & \qquad \|\eta _{T}\|< \gamma \sigma _{N} \\ & \begin{Bmatrix} -\gamma \varDelta \sigma _{N}\omega _{N\boldsymbol {q}}^{T} \text{sgn}(\eta _{N}) \\ 0 \\ \boldsymbol{0} \\ \frac{k_{v}}{p_{v}}\left [-k_{v}\varDelta \chi _{N} + \gamma \varDelta \sigma _{N}\text{sgn}(\eta _{N})\right ] \\ \boldsymbol{0} \end{Bmatrix} & \qquad \|\eta _{T}\|\geq \gamma \sigma _{N} \end{aligned} \end{cases}\displaystyle \end{aligned}$$
(58)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sánchez, E., Cosimo, A., Brüls, O. et al. Non-smooth numerical solution for Coulomb friction, rolling and spinning resistance of spheres applied to flexible multibody system dynamics. Multibody Syst Dyn 59, 69–103 (2023). https://doi.org/10.1007/s11044-023-09920-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-023-09920-w

Keywords

Navigation