Skip to main content
Log in

Input optimization for flexible multibody systems using the adjoint variable method and the flexible natural coordinates formulation

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

This work discusses a sensitivity information methodology for input optimization of flexible multibody systems. Mechanisms often need to perform desired motions, and especially in the case of underactuated flexible systems, the required drive motion or torque are nontrivial to determine. In this work we present an optimization approach which exploits the Adjoint Variable Method (AVM) in combination with the Flexible Natural Coordinates Formulation (FNCF) for obtaining the sensitivity information. The Adjoint Variable Method has the advantage of obtaining accurate sensitivity information at a computational cost that is relatively independent of the number of model parameters. FNCF combines the advantageous properties of the Floating Frame of Reference Formulation (FFRF) and the Generalized Component Mode Synthesis (GCMS) methods for which the equations of motion are characterized by a constant mass and stiffness matrix, and quadratic constraint equations. This work shows how the specific structure of the motion equations obtained through FNCF reduces the complexity of the Adjoint Variable Method as the required simulation derivatives for input optimization can be readily obtained and are of limited order. The approach is illustrated for an input optimization case on a flexible slider–crank multibody model, where the objective is to construct an input torque signal such that the crank’s angular velocity matches a predefined reference signal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. \(\widetilde{\pmb \omega} = \widetilde{ \begin{bmatrix} \omega _{1}& \omega _{2}&\omega _{3} \end{bmatrix}} ^{\mathrm{T}}= \begin{bmatrix} 0& -\omega _{3} & \omega _{2} \\ \omega _{3}& 0 & -\omega _{1} \\ -\omega _{2}& \omega _{1} & 0 \end{bmatrix} \)

References

  1. Bastos, G., Seifried, R., Brüls, O.: Inverse dynamics of serial and parallel underactuated multibody systems using a DAE optimal control approach. Multibody Syst. Dyn. 30(3), 359–376 (2013). https://doi.org/10.1007/s11044-013-9361-z

    Article  MathSciNet  MATH  Google Scholar 

  2. Bertolazzi, E., Biral, F., Da Lio, M.: Symbolic–numeric indirect method for solving optimal control problems for large multibody systems. Multibody Syst. Dyn. 2005(13), 233–252 (2005). https://doi.org/10.1007/S11044-005-3987-4. 2. https://link.springer.com/article/10.1007/s11044-005-3987-4

    Article  MathSciNet  MATH  Google Scholar 

  3. Bestle, D.: Optimization of automotive systems. In: Concurrent Engineering: Tools and Technologies for Mechanical System Design, pp. 671–683. Springer, Berlin Heidelberg, Berlin, Heidelberg (1993). https://doi.org/10.1007/978-3-642-78119-3_25

    Chapter  Google Scholar 

  4. Bischof, C.H.: On the automatic differentiation of computer programs and an application to multibody systems. In: Solid Mechanics and Its Applications, pp. 41–48. Springer, Dordrecht (1996). https://doi.org/10.1007/978-94-009-0153-7_6

    Chapter  Google Scholar 

  5. Callejo, A., Sonneville, V., Bauchau, O.A.: Discrete adjoint method for the sensitivity analysis of flexible multibody systems. J. Comput. Nonlinear Dyn. 14(2), 1–11 (2019). https://doi.org/10.1115/1.4041237

    Article  Google Scholar 

  6. Craig, R., Bampton, M.: Coupling of substructures for dynamic analyses. AIAA J. 6(7), 1313–1319 (1968). https://doi.org/10.2514/3.4741. https://hal.archives-ouvertes.fr/hal-01537654

    Article  MATH  Google Scholar 

  7. Craig, R.R., Kurdila, A.J.: Fundamentals of Structural Dynamics, 2nd edn. Wiley, New York (2006)

    MATH  Google Scholar 

  8. Haug, E.J., Arora, J.S.: Design sensitivity analysis of elastic mechanical systems. Comput. Methods Appl. Mech. Eng. 15(1), 35–62 (1978)

    Article  MATH  Google Scholar 

  9. Eichmeir, P., Lauß, T., Oberpeilsteiner, S., Nachbagauer, K., Steiner, W.: The adjoint method for time-optimal control problems. J. Comput. Nonlinear Dyn. 16(2), 1–12 (2021). https://doi.org/10.1115/1.4048808

    Article  Google Scholar 

  10. Gerstmayr, J., Ambrósio, J.A.C.: Component mode synthesis with constant mass and stiffness matrices applied to flexible multibody systems. Int. J. Numer. Methods Eng. 73(11), 1518–1546 (2008). https://doi.org/10.1002/nme.2133

    Article  MATH  Google Scholar 

  11. Haug, E.J.: Design sensitivity analysis of dynamic systems. In: Mota, S.C.A. (ed.) Computer Aided Optimal Design: Structural and Mechanical Systems, pp. 705–755. Springer, Berlin (1987). https://doi.org/10.1007/978-3-642-83051-8_22

    Chapter  Google Scholar 

  12. Haug, E.J., Wehage, R.A., Mani, N.K.: Design sensitivity analysis of large-scale constrained dynamic mechanical systems. J. Mech. Des., Trans. ASME 106(2), 156–162 (1984). https://doi.org/10.1115/1.3258573

    Article  Google Scholar 

  13. Hurty, W.C.: Dynamic analysis of structural systems using component modes. AIAA J. 3(4), 678–685 (1965). https://doi.org/10.2514/3.2947

    Article  Google Scholar 

  14. de Jalon, J.G., Bayo, E.: Kinematic and Dynamic Simulation of Multibody Systems. Springer, New York (1994), mechanical edn.

    Book  Google Scholar 

  15. Jay, L.O., Negrut, D.A.N.: Extensions of the HHT-alpha method to DAEs in mechanics. Electron. Trans. Numer. Anal. 26, 190–208 (2007)

    MathSciNet  MATH  Google Scholar 

  16. Jensen, J.S., Nakshatrala, P.B., Tortorelli, D.A.: On the consistency of adjoint sensitivity analysis for structural optimization of linear dynamic problems. Struct. Multidiscip. Optim. 49(5), 831–837 (2014). https://doi.org/10.1007/s00158-013-1024-4

    Article  MathSciNet  Google Scholar 

  17. Lauß, D.I.T.: Optimal Control of Multibody Systems Using the Adjoint Variable Approach, July (2019)

    Google Scholar 

  18. Lauß, T., Leitner, P., Oberpeilsteiner, S., Steiner, W.: Energy optimal manipulation of an industrial robot. In: ECCOMAS Thematic Conference on Multibody Dynamics, June 29-July 2 Barcelona, Spain, vol. 43, pp. 1–10 (2015)

    Google Scholar 

  19. Lauß, T., Oberpeilsteiner, S., Steiner, W., Nachbagauer, K.: The discrete adjoint gradient computation for optimization problems in multibody dynamics. J. Comput. Nonlinear Dyn. 12(3), 1–10 (2017). https://doi.org/10.1115/1.4035197

    Article  MATH  Google Scholar 

  20. Negrut, D., Ottarsson, G., Rampalli, R., Sajdak, A.: On the use of the HHT method in the context of index 3 differential algebraic equations of multibody dynamics. In: Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference – DETC2005, vol. 6A, pp. 207–218 (2005). https://doi.org/10.1115/detc2005-85096

    Chapter  Google Scholar 

  21. Negrut, D., Rampalli, R., Ottarsson, G., Sajdak, A.: On an implementation of the Hilber–Hughes–Taylor method in the context of index 3 differential-algebraic equations of multibody dynamics (DETC2005-85096). J. Comput. Nonlinear Dyn. 2(1), 73–85 (2007). https://doi.org/10.1115/1.2389231

    Article  Google Scholar 

  22. Oberpeilsteiner, S., Lauss, T., Nachbagauer, K., Steiner, W.: Optimal input design for multibody systems by using an extended adjoint approach. Multibody Syst. Dyn. 40(1), 43–54 (2017). https://doi.org/10.1007/s11044-016-9541-8

    Article  MathSciNet  MATH  Google Scholar 

  23. Pechstein, A., Reischl, D., Gerstmayr, J.: A generalized component mode synthesis approach for flexible multibody systems with a constant mass matrix. J. Comput. Nonlinear Dyn. 8(1), 011019 (2012). https://doi.org/10.1115/1.4007191. http://computationalnonlinear.asmedigitalcollection.asme.org/article.aspx?doi=10.1115/1.4007191

    Article  Google Scholar 

  24. Seifried, R.: Two approaches for feedforward control and optimal design of underactuated multibody systems. Multibody Syst. Dyn. 27(1), 75–93 (2012). https://doi.org/10.1007/s11044-011-9261-z

    Article  MathSciNet  MATH  Google Scholar 

  25. Seifried, R.: Dynamics of Underactuated Multibody Systems. Modeling, Control and Optimal Design, vol. 1. Springer, Berlin (2014). https://doi.org/10.1002/pamm.200910034

    Book  MATH  Google Scholar 

  26. Seifried, R., Burkhardt, M., Held, A.: Trajectory control of serial and parallel flexible manipulators using model inversion. Comput. Methods Appl. Sci. 28, 53–75 (2013). https://doi.org/10.1007/978-94-007-5404-1_3/FIGURES/8. https://link.springer.com/chapter/10.1007/978-94-007-5404-1_3

    Article  MathSciNet  MATH  Google Scholar 

  27. Shabana, A.A.: Dynamics of Multibody Systems, vol. 9781107042 (2013). https://doi.org/10.1017/CBO9781107337213

    Book  MATH  Google Scholar 

  28. Vanpaemel, S.: Sensitivity analysis of flexible multibody systems. PhD thesis, KU, Leuven (2022). With applications in parameter, topology and input optimization

  29. Vanpaemel, S., Naets, F., Vermaut, M., Desmet, W.: Parameter identification on flexible multibody models using the adjoint variable method and flexible natural coordinate formulation. J. Comput. Nonlinear Dyn. 15(7), 071006 (2020). https://doi.org/10.1115/1.4047086. http://asmedigitalcollection.asme.org/computationalnonlinear/article-pdf/15/7/071006/6536461/cnd_015_07_071006.pdf

    Article  MATH  Google Scholar 

  30. Vermaut, M., Naets, F., Desmet, W.: A flexible natural coordinates formulation (FNCF) for the efficient simulation of small-deformation multibody systems. Int. J. Numer. Methods Eng. 115(11), 1353–1370 (2018). https://doi.org/10.1002/nme.5847

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Internal Funds KU Leuven are gratefully acknowledged for their support. This research was partially supported by Flanders Make, the strategic research center for the manufacturing industry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Vanpaemel.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vanpaemel, S., Vermaut, M., Desmet, W. et al. Input optimization for flexible multibody systems using the adjoint variable method and the flexible natural coordinates formulation. Multibody Syst Dyn 57, 259–277 (2023). https://doi.org/10.1007/s11044-023-09874-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-023-09874-z

Keywords

Navigation