Skip to main content
Log in

Analytical Expression for the Atomic Friction of a Single Asperity Based on the Prandtl–Tomlinson Model

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

The Prandtl–Tomlinson (PT) model has been widely applied to interpret the atomic friction mechanism of a single asperity. In this study, we present an approximate explicit expression for the friction force in the one-dimensional PT model under quasi-static conditions. The ‘stick–slip’ friction curves are first approximated properly by sawtooth-like lines, where the critical points before and after the ‘slip’ motion are described analytically in terms of a dimensionless parameter η. Following this, the average friction force is expressed in a closed form that remains continuous and valid for η > 1. Finally, an analytical expression for the load dependence of atomic friction of a single asperity is derived by connecting the parameter η with the normal load. With the parameters reported in experiments, our prediction shows good agreement with relevant experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mate C, McClelland G, Erlandsson R, et al. Atomic-scale friction of a tungsten tip on a graphite surface. Phys Rev Lett. 1987;59:1942–5.

    Article  Google Scholar 

  2. Marti O, Colchero J, Mlynek J. Combined scanning force and friction microscopy of mica. Nanotechnology. 1990;1:141–4.

    Article  Google Scholar 

  3. Riedo E, Gnecco E, Benewitz R, et al. Interaction potential and hopping dynamics governing sliding friction. Phys Rev Lett. 2003;91: 084502.

    Article  Google Scholar 

  4. Germann GJ, Cohen SR, Neubauer G, et al. Atomic scale friction of a diamond tip on diamond (100) and (111) surfaces. J Appl Phys. 1993;73:163–7.

    Article  Google Scholar 

  5. van den Oetelaar RJA, Flipse CFJ. Atomic-scale friction on diamond(111) studied by ultra-high vacuum atomic force microscopy. Surf Sci. 1997;384:L828–35.

    Article  Google Scholar 

  6. Socoliuc A, Gnecco E, Maier S, et al. Atomic-scale control of friction by actuation of nanometer-sized contacts. Science. 2006;313:207–10.

    Article  Google Scholar 

  7. Gnecco E, Bennewitz R, Gyalog T, et al. Velocity dependence of atomic friction. Phys Rev Lett. 2000;84:1172–5.

    Article  Google Scholar 

  8. Socoliuc A, Bennewitz R, Gnecco E, et al. Transition from stick-slip to continuous sliding in atomic friction: Entering a new regime of ultralow friction. Phys Rev Lett. 2004;92: 134301.

    Article  Google Scholar 

  9. Sørensen MR, Jacobsen KW, Stoltze P. Simulations of atomic-scale sliding friction. Phys Rev B. 1996;53:2101–13.

    Article  Google Scholar 

  10. Shimizu J, Eda H, Yoritsune M, et al. Molecular dynamics simulation of friction on the atomic scale. Nanotechnology. 1998;9:118–23.

    Article  Google Scholar 

  11. Li Q, Dong Y, Perez D, et al. Speed dependence of atomic stick-slip friction in optimally matched experiments and molecular dynamics simulations. Phys Rev Lett. 2011;106: 126101.

    Article  Google Scholar 

  12. Dong Y, Li Q, Martini A. Molecular dynamics simulation of atomic friction: a review and guide. J Vac Sci Technol A. 2013;31: 030801.

    Article  Google Scholar 

  13. Popov VL, Gray JAT. Prandtl–Tomlinson model: history and applications in friction, plasticity, and nanotechnologies. Z Angew Math Mech. 2012;92:683–708.

    Article  MathSciNet  Google Scholar 

  14. Tománekl D, Zhong W, Thomas H. Calculation of an atomically modulated friction force in atomic-force microscopy. Europhys Lett. 1991;15:887–92.

    Article  Google Scholar 

  15. Jansen L, Hölscher H, Fuchs H, et al. Temperature dependence of atomic-scale stick-slip friction. Phys Rev Lett. 2010;104: 256101.

    Article  Google Scholar 

  16. Hölscher H, Ebeling D, Schwarz UD. Friction at atomic-scale surface steps: experiment and theory. Phys Rev Lett. 2008;101: 246105.

    Article  Google Scholar 

  17. Torche PC, Polcar T, Hovorka O. Thermodynamic aspects of nanoscale friction. Phys Rev B. 2019;100: 125431.

    Article  Google Scholar 

  18. Sang Y, Dubé M, Grant M. Thermal effects on atomic friction. Phys Rev Lett. 2001;87: 174301.

    Article  Google Scholar 

  19. Lu P, Loke YC, Tang X, et al. A note on the two-spring Tomlinson model. Tribol Lett. 2011;43:73–6.

    Article  Google Scholar 

  20. Dong Y, Vadakkepatt A, Martini A. Analytical models for atomic friction. Tribol Lett. 2011;44:367–86.

    Article  Google Scholar 

  21. Helman JS, Baltensperger W. Simple model for dry friction. Phys Rev B. 1994;49:3831–8.

    Article  Google Scholar 

  22. Gnecco E, Roth R, Baratoff A. Analytical expressions for the kinetic friction in the Prandtl–Tomlinson model. Phys Rev B. 2012;86: 035443.

    Article  Google Scholar 

  23. Mo Y, Turner KT, Szlufarska I. Friction laws at the nanoscale. Nature. 2009;457:1116–9.

    Article  Google Scholar 

  24. Carpick R, Ogletree D, Salmeron M. Lateral stiffness: a new nanomechanical measurement for the determination of shear strengths with friction force microscopy. Appl Phys Lett. 1997;70:1548–50.

    Article  Google Scholar 

  25. Johnson KL. Contact mechanics. London: Cambridge University Press; 1985.

    Book  Google Scholar 

  26. Johnson KL, Woodhouse J. Stick-slip motion in the atomic force microscope. Tribol Lett. 1998;5:155–60.

    Article  Google Scholar 

  27. Medyanik S, Liu WK, Sung IH, et al. Predictions and observations of multiple slip modes in atomic-scale friction. Phys Rev Lett. 2006;97: 136106.

    Article  Google Scholar 

Download references

Acknowledgements

The support from the National Natural Science Foundation of China (Grant Nos. 12302141, 12372100, and 12102322), the China Postdoctoral Science Foundation (Grant No. 2023M732799), and the General Research Fund (Project No. CityU 11302920) from the Research Grants Council of the Hong Kong Special Administrative Region is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gangfeng Wang or Xinrui Niu.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, W., Ding, Y., Wang, G. et al. Analytical Expression for the Atomic Friction of a Single Asperity Based on the Prandtl–Tomlinson Model. Acta Mech. Solida Sin. (2024). https://doi.org/10.1007/s10338-024-00488-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10338-024-00488-2

Keywords

Navigation