Skip to main content
Log in

Long term basic creep behavior of high performance concrete: data and modelling

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

This paper presents long term creep data from high performance concretes (HPC) sourced from different research programs or civil engineering projects carried out at IFSTTAR’s Paris laboratory, France. The authors are now making all this data publicly available through a data archive. The experimental procedures are described in detail, in particular that used to verify the constancy over time of the specimens’ compressive stress. It is shown that the majority of the concretes exhibit linear long-term behavior when plotted against log (time). Indeed, the paper describes modelling sourced from the literature, based on a logarithmic function of time which, despite its simplicity, matches the experimental data quite well. Using this modelling, we studied the behavior of HPC prepared from the same set of constituents. We have shown that the logarithmic change in creep is a quasi linear function of the water to cement ratio and aggregate concentration. Finally, the accuracy of the fib MC2010 model code has been tested on IFSTARR’s data bank.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Bazant ZP, Qiang Y, Guang-Hua L (2012) Excessive long-time deflections of prestressed box girders: I. Record-span bridge in Palau and other paradigms. ASCE J Struct Eng 138(6):676–686

    Article  Google Scholar 

  2. Sellin JP, Barthelemy JB, Torrenti JM, Bondonnet G (2014) Delayed deformations of segmental prestressed concrete bridges: the case of the Savines Bridge. AMS conference, Delft

    Google Scholar 

  3. Torrenti JM, Le Roy R (2015) Analysing and modelling basic creep. In Concreep-10 conference, Vienna

  4. Vandamme M, Ulm F (2013) Nanoindentation investigation of creep properties of calcium silicate hydrates. Cem Concr Res 52:38–52

    Article  Google Scholar 

  5. Brooks JJ (2005) 30-Year creep and shrinkage of concrete. Mag Concr Res 57(9):545–556

    Article  Google Scholar 

  6. RILEM TC-242-MDC (2015) Multi-decade creep and shrinkage of concrete: material model and structural analysis, Model B4 for creep, drying shrinkage and autogenous shrinkage of normal and high-strength concretes with multi-decade applicability. Mater Struct 48(4):753–770

    Article  Google Scholar 

  7. Sellier A, Multon S, Buffo-Lacarrière L, Vidal T, Bourbon X, Camps G (2016) Concrete creep modelling for structural applications: non-linearity, multi-axiality, hydration, temperature and drying effects. Cem Concr Res 79:301–315

    Article  Google Scholar 

  8. Hubler MH, Wendner R, Bažant ZP (2015) Comprehensive database for concrete creep and shrinkage: Analysis and recommendations for testing and recording. ACI Mater J 112(4):547–558

    Google Scholar 

  9. http://www.civil.northwestern.edu/people/bazant/CreepShrinkData_131127.xlsx

  10. Hanson JA (1953) A 10-year study of creep properties of concrete. Concrete Lab. Rep. Sp-38, Division of Engineering Laboratories, US Dept. of the interior, Bureau of Reclamation, Denver

  11. Browne R, Blundell R (1969) The influence of loading age and temperature on the long term creep behaviour of concrete in a sealed, moisture stable state. Mater Struct 2:133–143

    Google Scholar 

  12. Troxell GE, Raphael JE, Davis RW (1958) Long time creep and shrinkage tests of plain and reinforced concrete. Proc ASTM 58:1101–1120

    Google Scholar 

  13. Benboudjema F, Torrenti JM (2015) On the very long term delayed behaviour of biaxially prestressed structures: the case of the containments of nuclear power plants, Concreep10 conference, Vienna

  14. Barthélémy JF, Sellin JF, Torrenti JM (2015) The effects of long term behavior of both concrete and prestressing tendons on the delayed deflection of a prestressed structure. Concreep10 conference, Vienna

  15. Wendner R, Hubler MH, Bažant ZP (2015) Optimization method, choice of form and uncertainty quantification of Model B4 using laboratory and multi-decade bridge databases. Mater Struct 48(4):771–796

    Article  Google Scholar 

  16. Le Roy R (1995) déformations instantanées et différées des bétons de hautes performances. thèse de l’école nationale des ponts et chaussées, spécialité matériaux et structures. Instanteneous and delayed deformations of high performance concrete, PhD thesis, école nationale des ponts et chaussées, Paris, In French

  17. Acker P, Bazant ZP, Chern JC, Huet C, Wittmann FH (1998) Measurement of time-dependent strains of concrete. RILEM TC 107-CSP, Creep and shrinkage prediction models: principles of their formulation. Mater Struct 31:507–512

    Article  Google Scholar 

  18. Toutlemonde F, Le Maou F (1996) Protection des éprouvettes de béton vis-à-vis de la dessiccation-Le point sur quelques techniques de laboratoires. The protection of concrete samples from dessication-some laboratory techniques. Bulletin des Ponts et Chaussées 203:105–119 in French

    Google Scholar 

  19. Toutlemonde F, Boulay C, Rossi P (1995) High strain rate tensile behavior of concrete: significant parameters. In: Fracture Mechanics of Concrete Structures, Proceedings FRAMCOS-2. AEDIFICATIO publishers, Freiburg, pp 709–718

  20. Le Roy R, Cussac JM, Martin O (1999) Structures sensitive to creep: from laboratory experimentation to structural design: The case of the Avignon high-speed rail viaduct, Creep and shrinkage of concrete. Rev Fran Gén Civ Hermes Sci Pub 3(3):133

    Google Scholar 

  21. Auperin M, De Larrard F, Richard P, Acker P (1989) Retrait et fluage de bétons à hautes performances aux fumées de silice-Influence de l’âge au chargement, shrinkage and creep of high performance concretes, influence of the loading age. Ann. de l’ITBTP, Série béton, in French 254, 474

  22. Cadoret G, Richard P (1992) Full scale use of high performance concrete in building and public works. In “High performance concrete”, edited by Y. Malier, E&FN Spon

  23. Le Roy R, Boulay C Le Maou F (1999) étude du retrait et du fluage du béton M100 et M120, Rapport pour le plan Génie Civil, projet national BHP 2000, Paris. Creep and shrinkage study of HPC M100 et M120. Report fort the Civil engineering plan, National French Project, BHP 2000, in French

  24. Virlogeux M, Servant C, Cremer JM, Martin JP, Buonomo M (2005) Millau viaduct. Struct Eng Intern 1:4–7

    Article  Google Scholar 

  25. Le Roy R (1996) pré étude de formulation des bétons de hautes performances B80, essais de retrait et fluage sur les 2 BHP. Report for agence interdépartementale des ouvrages d’art (AIOA), ministère de l’aménagement, de l’équipement et des transports. Mix design pre study of concrete B80, creep and shrinkage tests on the 2 HPC, Report for the French ministry of country planning, equipment and transport, in French

  26. Müller H, Anders I, Breiner R, Vogel M (2013) Concrete: treatment of types and properties in fib Model Code 2010. Struct Concr 14(4):320

    Article  Google Scholar 

  27. Acker P, Ulm F (2001) Creep and shrinkage of concrete: physical origins and practical measurements. Nucl Eng Des 203:143–158

    Article  Google Scholar 

  28. Zhang Q, Le Roy R, Vandamme M, Zuber B (2014) Long term creep properties of cementitious material: comparing microindentation testing with macroscopic uniaxial compressive testing. Cem Concr Res 58:89–98

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Le Roy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Funding

Part of this study was funded by the Agence Inter-départementale des Ouvrages d’Art (AIOA) for the Millau Viaduct project (experiments on concretes Millau B80 and Millau B80FS), and by the IREX institute (experiments on concretes M100B, M12B, and M120C). The rest (Le Roy’s thesis) was funded by the French Ministry of Equipment (which has since become the Ministry of Ecology).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le Roy, R., Le Maou, F. & Torrenti, J.M. Long term basic creep behavior of high performance concrete: data and modelling. Mater Struct 50, 85 (2017). https://doi.org/10.1617/s11527-016-0948-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1617/s11527-016-0948-8

Keywords

Navigation