Skip to main content
Log in

Circular arc rules of complex plane plot for model parameters determination of viscoelastic material

  • Published:
Mechanics of Time-Dependent Materials Aims and scope Submit manuscript

Abstract

We present a new approach to determine the rheological parameters of a mechanical model of viscoelastic materials. The fractional derivative solid model composed of a spring in series with a fractional derivative Kelvin–Voigt element has been employed to characterize the dynamic mechanical response of a real viscoelastic material. In dynamic mechanical analysis (DMA) measurements, the frequency-dependent loss modulus is plotted against the storage modulus in the form of complex plane plot. We find that the complex plane plot of the fractional derivative solid model is a depressed or distorted semicircle with its center below the real axis. The model parameters could be identified graphically via its complex plane curve, from which the spring constants can be obtained through the two intercepts of the extrapolated circular arc with the real axis, whereas the order of fractional dashpot can be estimated by the displacement of the semicircle center. The graphical method allows us to easily find rheological parameters, without using complicated calculation and special algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adolfsson, K., Enelund, M., Olsson, P.: On the fractional order model of viscoelasticity. Mech. Time-Depend. Mater. 9(1), 15–34 (2005)

    Article  Google Scholar 

  • Beda, T., Chevalier, Y.: Identification of viscoelastic fractional complex modulus. AIAA J. 42(7), 1450–1456 (2004a)

    Article  Google Scholar 

  • Beda, T., Chevalier, Y.: New methods for identifying rheological parameter for fractional derivative modeling of viscoelastic behavior. Mech. Time-Depend. Mater. 8(2), 105–118 (2004b)

    Article  Google Scholar 

  • Caputo, M., Mainardi, F.: Linear models of dissipation in anelastic solids. Riv. Nuovo Cimento 1(2), 161–198 (1971a)

    Article  Google Scholar 

  • Caputo, M., Mainardi, F.: A new dissipation model based on memory mechanism. Pure Appl. Geophys. 91(1), 134–147 (1971b)

    Article  Google Scholar 

  • Cole, K.S., Cole, R.H.: Dispersion and absorption in dielectrics I. Alternating current characteristics. J. Chem. Phys. 9, 341–351 (1941)

    Article  Google Scholar 

  • Ferry, J.D.: Viscoelastic Properties of Polymers, 3rd edn. Wiley, New York (1980)

    Google Scholar 

  • Hao, D., Li, D., Liao, Y.: Parameter identification of modified fractional Zener model for thermorheological materials. J. Non-Cryst. Solids 409, 106–119 (2015)

    Article  Google Scholar 

  • Havriliak, S., Negami, S.: A complex plane analysis of \(\alpha \)-dispersions in some polymer systems. J. Polym. Sci., Part C 14(1), 99–117 (1966)

    Article  Google Scholar 

  • Havriliak, S., Negami, S.: A complex plane representation of dielectric and mechanical relaxation processes in some polymers. Polymer 8, 161–210 (1967)

    Article  Google Scholar 

  • Heymans, N., Podlubny, I.: Physical interpretation of initial conditions for fractional differential equations with Riemann–Liouville fractional derivatives. Rheol. Acta 45(5), 765–771 (2006)

    Article  Google Scholar 

  • Jrad, H., Renaud, F., Dion, J.L., Tawfiq, I., Haddar, M.: Experimental characterization, modeling and parametric identification of the hysteretic friction behavior of viscoelastic joints. Int. J. Appl. Mech. 5(2), 1350018 (2013)

    Article  Google Scholar 

  • Khajehsaeid, H.: A comparison between fractional-order and integer-order differential finite deformation viscoelastic models: effects of filler content and loading rate on material parameters. Int. J. Appl. Mech. 10(9), 1850099 (2018)

    Article  Google Scholar 

  • Koeller, R.C.: Applications of fractional calculus to the theory of viscoelasticity. J. Appl. Mech. 51(2), 299–307 (1984)

    Article  MathSciNet  Google Scholar 

  • Lewandowski, R., Chorążyczewski, B.: Identification of the parameters of the Kelvin–Voigt and the Maxwell fractional models, used to modeling of viscoelastic dampers. Comput. Struct. 88, 1–17 (2010)

    Article  Google Scholar 

  • Mainardi, F.: Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models. Imperial College Press, London (2010)

    Book  Google Scholar 

  • Mainardi, F., Spada, G.: Creep, relaxation and viscosity properties for basic fractional models in rheology. Eur. Phys. J. Spec. Top. 193(1), 133–160 (2011)

    Article  Google Scholar 

  • Makris, N., Kampas, G.: Analyticity and causality of the three-parameter rheological models. Rheol. Acta 48(7), 815–825 (2009)

    Article  Google Scholar 

  • Nolle, A.W.: Dynamic mechanical properties of rubberlike materials. J. Polym. Sci. 5(1), 1–54 (1950)

    Article  Google Scholar 

  • Oeser, M., Pellinien, T.: Computational framework for common visco-elastic models in engineering based on the theory of rheology. Comput. Geotech. 42, 145–156 (2012)

    Article  Google Scholar 

  • Pan, Z.Z., Liu, Z.S.: A novel fractional viscoelastic constitutive model for shape memory polymers. J. Polym. Sci., Polym. Phys. 56(16), 1125–1134 (2018)

    Article  Google Scholar 

  • Park, S.W.: Analytical modeling of viscoelastic dampers for structural and vibration control. Int. J. Solids Struct. 38, 8065–8092 (2001)

    Article  Google Scholar 

  • Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  • Pritz, T.: Analysis of four-parameter fractional derivative model of real solid materials. J. Sound Vib. 195(1), 103–115 (1996)

    Article  Google Scholar 

  • Rogers, L.: Operators and fractional derivatives for viscoelastic constitutive equations. J. Rheol. 27(4), 351–372 (1983)

    Article  Google Scholar 

  • Sahraoui, S., Zekri, N.: On fractional modeling of viscoelastic foams. Mech. Res. Commun. 96, 62–66 (2019)

    Article  Google Scholar 

  • Shaw, M.T., MacKnight, W.J.: Introduction to Polymer Viscoelasticity, 4th edn. Wiley, Hoboken (2018)

    Google Scholar 

  • Soula, M., Vinh, T., Chevalier, Y.: Transient responses of polymers and elastomers deduced from harmonic responses. J. Sound Vib. 205(2), 185–203 (1997)

    Article  MathSciNet  Google Scholar 

  • Strobl, G.: The Physics of Polymer: Concepts for Understanding Their Structures and Behavior, 3rd edn. Springer, Berlin (2007)

    Google Scholar 

  • Takahashi, S.: Cole–Cole’s circular arc rule on dynamic properties of viscoelastic materials. J. Colloid Sci. 9(4), 313–320 (1954)

    Article  Google Scholar 

  • Tschoegl, N.W.: The Phenomenological Theory of Linear Viscoelastic Behavior: An Introduction. Springer, Berlin (1989)

    Book  Google Scholar 

  • Van Krevelen, D.W., te Nijenhuis, K.: Properties of Polymers, 4th edn. Elsevier, Amsterdam (2009)

    Google Scholar 

  • Welch, S.W.J., Rorrer, R.A.L., Duren, R.G. Jr.: Application of time-based fractional calculus methods to viscoelastic creep and stress relaxation of materials. Mech. Time-Depend. Mater. 3(3), 279–303 (1999)

    Article  Google Scholar 

  • Yin, Y.L., Yang, Z.H., Shi, M.L.: Complex plane analysis of fractional derivative model and its use for parameter determination of viscoelastic material. In: International Conference on Manufacturing Technology, Materials and Chemical Engineering, Wuhan, China. IOP Conf. Ser.: Mater. Sci. Eng. 592, 012009 (2019a).

    Article  Google Scholar 

  • Yin, Y.L., Yang, Z.H., Shi, M.L.: Dynamic mechanical response for bituminous mixtures in wide frequency range. In: International Conference on Manufacturing Technology, Materials and Chemical Engineering, Wuhan, China. IOP Conf. Ser.: Mater. Sci. Eng., 592, 012059 (2019b).

    Article  Google Scholar 

  • Yin, Y.L., Yang, Z.H., Shi, M.L.: Analytical expression of complex modulus for viscoelastic material. Int. J. Appl. Mech. 12(5), 2050048 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial supports of Shanghai Municipal Commission of Science and Technology (No. 17DZ1200303) and the National Key Research and Development Projects of China (No. 2018YFD1101002). The authors also would like to express their appreciation to Editor-in-Chief Professor Igor Emri for allowing revisions and an anonymous reviewer for carefully reading of our manuscript and helpful comments contributing to the improvement of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenghong Yang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, Y., Yang, Z. & Shi, M. Circular arc rules of complex plane plot for model parameters determination of viscoelastic material. Mech Time-Depend Mater 25, 631–643 (2021). https://doi.org/10.1007/s11043-020-09465-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11043-020-09465-x

Keywords

Navigation