Skip to main content
Log in

An efficient IPVO based reversible data hiding method using four pixel-pairs

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

In the Improved Pixel Value Ordering (IPVO) reversible data hiding method first, a block of n pixels is sorted in ascending order. Then two pixel-pairs are established from the first two pixels and the last two pixels of the sorted block to embed at most two data bits. This paper uses the first three pixels and the last three pixels of the sorted block to form four pixel pairs for embedding at most four data bits. In fact, on the right, using the IPVO technique to embed data bits in the pair of (n − 2)−th and (n − 1)−th pixels and the pair of (n − 1)−th and n−th pixels. Embedding data bits in two pairs of pixels on the left is done similarly. The pixel pairs here all consist of two consecutive pixels in a sorted pixel block, so the embedding efficiency is high. Compared with IPVO-method, the proposed method has doubled the number of pixel pairs used, and the embedding capacity increased from 1.5 to 1.9 times depending on the smoothness of the original images. The experiment results are shown that the proposed method has a superior embedding capacity compared to the existing Pixel Value Ordering(PVO)-based reversible data hiding methods while maintaining good stego image quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

No data were used to support this study.

References

  1. Alattar AM (2003) Reversible watermark using difference expansion of triplets. Proceedings 2003 international conference on image processing IEEE 1, pp 501–504. https://doi.org/10.1109/ICIP.2003.1247008

  2. Alattar AM (2004) Reversible watermark using the difference expansion of a generalized integer transform. IEEE Trans Image Process 13(8):1147–1156

    Article  MathSciNet  Google Scholar 

  3. Al-Qershi OM, Khoo BE (2011) High capacity data hiding schemes for medical images on difference expansion. J Syst Softw 84:105–112

    Article  Google Scholar 

  4. Bharanitharan K, Chang CC, Rui YH, Wang ZH (2016) Efficient pixel prediction algorithm for reversible data hiding. Int J Netw Secur 18(4):750–757 http://ijns.jalaxy.com.tw/contents/ijns-v18-n4/ijns-2016-v18-n4-p750-757.pdf

    Google Scholar 

  5. Celik MU, Sharma G, Tekalp AM, Saber E (2005) Lossless generalized-lsb data embedding. IEEE Trans Image Process 14(2):253–266

    Article  Google Scholar 

  6. Celik MU, Sharma G, Tekalp AM (2006) Lossless watermarking for image authentication: a new framework and an implementation. IEEE Trans Image Process 15(4):1042–1049

    Article  Google Scholar 

  7. Chan CK, Cheng LM (2004) Hiding data in images by simple lsb substitution. Pattern Recogn 37(3):469–474

    Article  MATH  Google Scholar 

  8. Chen X, Sun X, Sun H, Zhou Z, Zhang J (2013) Reversible watermarking method based on asymmetric-histogram shifting of prediction errors. J Syst Softw 86(10):2620–2626

    Article  Google Scholar 

  9. Chen X, Sun X, Sun H, Xiang L, Yang B (2015) Histogram shifting based reversible data hiding method using directed-prediction scheme. Multimed Tools Appl 74(15):5747–5765

    Article  Google Scholar 

  10. Chen S, Chen X, Fu H (2017) General framework of reversible watermarking based on asymmetric histogram shifting of prediction error. Adv Multimed 2017(2):1–9

    Article  Google Scholar 

  11. Dragoi IC, Coltuc D (2014) Local-prediction-based difference expansion reversible watermarking. IEEE Trans Image Process 23(4):1779–1790

    Article  MathSciNet  MATH  Google Scholar 

  12. Fridrich J, Goljan M, Du R (2001) Invertible authentication. Proceedings of the APIE, vol 4314, pp 197–208. https://doi.org/10.1117/12.435400

  13. Fridrich J, Goljan M, Du R (2002) Lossless data embedding - new paradigm in digital watermarking. EURASIP J Adv Signal Process 2002(2):185–196. https://doi.org/10.1155/S1110865702000537

    Article  MATH  Google Scholar 

  14. Hu Y, Lee HK, Li J (2008) De-based reversible data hiding with improved overflow location map. IEEE Trans Circuits Syst Video Technol 19(2):250–260. https://doi.org/10.1109/TCSVT.2008.2009252

    Article  Google Scholar 

  15. Hwang HJ, Kim HJ, Sachnev V, Joo SH (2010) Reversible watermarking method using optimal histogram pair shifting based on prediction and sorting. Trans Internet Inf Syst 4(4):655–670

    Google Scholar 

  16. Jia T, Yin Z, Zhang X, Luo Y (2019) Reversible data hiding based on reducing invalid shifting of pixels in histogram shifting. Signal Process 163:238–245

    Article  Google Scholar 

  17. Kamstra L, Heijmans HJ (2005) Reversible data embedding into images using wavelet techniques and sorting. IEEE Trans Image Process 14(12):2082–2090

    Article  MathSciNet  Google Scholar 

  18. Kaur G, Singh S, Rani R (2020) A high capacity reversible data hiding technique based on pixel value ordering using interlock partitioning. 7th international conference on signal processing and integrated networks, pp 727–732. https://doi.org/10.1109/SPIN48934.2020.9071330

  19. Khodaei M, Faez K (2010) Reversible data hiding by using modified difference expansion. 2nd international conference on signal processing systems IEEE (3), pp 31–34. https://doi.org/10.1109/ICSPS.2010.5555649

  20. Kukreja S, Kasana SS, Kasana G (2019) Histogram based multilevel reversible data hiding scheme using simple and absolute difference images. Multimed Tools Appl 78(5):6139–6162

    Article  MATH  Google Scholar 

  21. Kumar R, Jung KH (2020) Enhanced pairwise IPVO-based reversible data hiding scheme using rhombus context. Inf Sci 536:101–119

    Article  MathSciNet  MATH  Google Scholar 

  22. Kumar R, Kumar N, Jung KH (2020) I-PVO based high capacity reversible data hiding using bin reservation strategy. Multimed Tools Appl 79:22635–22651

    Article  Google Scholar 

  23. Lee CC, Wu HC, Tsai CS, Chu YP (2008) Adaptive lossless steganographic scheme with centralized difference expansion. Pattern Recogn 41(6):2097–2106

    Article  MATH  Google Scholar 

  24. Li YC, Yeh CM, Chang CC (2010) Data hiding based on the similarity between neighboring pixels with reversibility. Digit Signal Process 20:1116–1128

    Article  Google Scholar 

  25. Li X, Yang B, Zeng T (2011) Efficient reversible watermarking based on adaptive prediction-error expansion and pixel selection. IEEE Trans Image Process 20(12):3524–3533

    Article  MathSciNet  MATH  Google Scholar 

  26. Li X, Li J, Li B, Yang B (2013) High-fidelity reversible data hiding scheme based on pixel-value-ordering and prediction-error expansion. Signal Process 93(1):198–205

    Article  Google Scholar 

  27. Li J, Wu YH, Lee CF, Chang CC (2018) Generalized pvo-k embedding technique for reversible data hiding. Int J Netw Secur 20(1):65–77. https://doi.org/10.6633/IJNS.201801.20(1).08

    Article  Google Scholar 

  28. Li JJ, Lee CF, Chang CC, Lin JY, Wu YH (2019) Reversible data hiding scheme based on quad-tree and pixel value ordering. Digital Object Identifier. https://doi.org/10.1109/ACCESS.2019.2941500

  29. Lin CC, Tai WL, Chang CC (2008) Multilevel reversible data hiding based on histogram modification of difference images. Pattern Recogn 41:3582–3591

    Article  MATH  Google Scholar 

  30. Liu M, Seah HS, Zhu C, Lin W, Tian F (2012) Reducing location map in prediction-based difference expansion for reversible image data embedding. Signal Process 92(3):819–828

    Article  Google Scholar 

  31. Ma X, Pan Z, Hu S, Wang L (2015) High-fidelity reversible data hiding scheme based on multi-predictor sorting and selecting mechanism. J Vis Commun Image Represent 28:71–82

    Article  Google Scholar 

  32. Macq B (2000) Lossless multiresolution transform for image authenticating watermarking. 10th European signal processing conference. IEEE, pp 1–4. https://ieeexplore.ieee.org/document/7075698

  33. Mielikainen (2006) Lsb matching revisited. IEEE Signal Process Lett 13(5):285–287. https://doi.org/10.1109/LSP.2006.870357

    Article  Google Scholar 

  34. Ni Z, Shi YQ, Ansari N (2006) Reversible data hiding. IEEE Trans Circuits Syst Video Technol 16(3):354–362

    Article  Google Scholar 

  35. Ou B, Zhao Y, Ni R (2010) Reversible watermarking using prediction error histogram and blocking. International workshop on digital watermarking. Springer, pp 170–180. https://doi.org/10.1007/978-3-642-18405-5_14

  36. Ou B, Li X, Zhao Y, Ni R (2014) Reversible data hiding using invariant pixel value-ordering and prediction-error expansion. Signal Process Image Commun 29(7):760–772

    Article  Google Scholar 

  37. Ou B, Li X, Li W, Shi YQ (2019) Pixel-value ordering based reversible data hiding with adaptive texture classification and modification. International Workshop on Digital Watermarking IWDW 2018: digital forensics and watermarking, pp 169–179. https://doi.org/10.1007/978-3-030-11389-6_13

  38. Pan Z, Gao E (2019) Reversible data hiding based on novel embedding structure pvo and adaptive block-merging strategy. Multimed Tools Appl 78(18):26047–26071

    Article  Google Scholar 

  39. Pan G, Wu Y, Wu Z (2001) A novel data hiding method for two-color images. International conference on information and communications security. Springer, pp 261–270. https://doi.org/10.1007/3-540-45600-7_30

  40. Peng F, Li X, Yang B (2014) Improved pvo-based reversible data hiding. Digit Signal Process 25:255–265

    Article  Google Scholar 

  41. Sachnev V, Kim HJ, Nam J, Suresh S, Shi YQ (2009) Reversible watermarking algorithm using sorting and prediction. IEEE Trans Circuits Syst Video Technol 19(7):989–999

    Article  Google Scholar 

  42. Sao NK, Hoa NN, At PV (2020) An effective reversible data hiding method based on pixel-value-ordering. J Comput Sci Cybern 36(2):139–158

    Article  Google Scholar 

  43. Shin SY, Yoo HM, Suh JW (2014) Reversible watermarking based on histogram shifting of difference image between original and predicted images. IARIA, pp 147–150

  44. Tai WL, Yeh CM, Chang CC (2009) Reversible data hiding based on histogram modification of pixel differences. IEEE Trans Circuits Syst Video Technol 19(6):906–910. https://doi.org/10.1109/TCSVT.2009.2017409

    Article  Google Scholar 

  45. Thodi DM and Rodriguez JJ (2004) Prediction-error based reversible watermarking. 2004 international conference on image processing ICIP’04 IEEE 3, pp 1549–1552. https://doi.org/10.1109/ICIP.2004.1421361

  46. Thodi DM, Rodrıguez JJ (2007) Expansion embedding techniques for reversible watermarking. IEEE Trans Image Process 16(3):721–730

    Article  MathSciNet  Google Scholar 

  47. Tian J (2003) Reversible data embedding using a difference expansion. IEEE Trans Circuits Syst Video Technol 13(8):890–896

    Article  Google Scholar 

  48. Wang X, Ding J, Pei Q (2015) A novel reversible image data hiding scheme based on pixel value ordering and dynamic pixel block partition. Inf Sci 310:16–35

    Article  Google Scholar 

  49. Weng S, Pan JS, Li L (2016) Reversible data hiding based on an adaptive pixel embedding strategy and two-layer embedding. Inf Sci 369:144–159

    Article  Google Scholar 

  50. Weng S, Pan JS, Jiehang D (2018) Pairwise IPVO-based reversible data hiding. Multimed Tools Appl 77:13419–13444

    Article  Google Scholar 

  51. Weng S, Shi Y, Hong W, Yao Y (2019) Dynamic improved pixel value ordering reversible data hiding. Inf Sci 489:136–154

    Article  Google Scholar 

  52. Wu DC, Tsai WH (2003) A steganographic method for images by pixel value differencing. Pattern Recogn Lett 24(9–10):1613–1626

    Article  MATH  Google Scholar 

  53. Wu H, Li X, ZhaoY NR (2019) Improved reversible data hiding based on PVO and adaptive pairwise embedding. J Real-Time Process 16:685–695

    Article  Google Scholar 

  54. Yaqub MK, Al-Jaber A (2006) Reversible watermarking using modified difference expansion. Int J Comput Inf Sci 4(3):134–142 http://www.ijcis.info/Vol4N3/Vol4N3PP134-142FS.pdf

    Google Scholar 

  55. Zhang X, Wang S (2006) Efficient steganographic embedding by exploiting modification direction. IEEE Commun Lett 10(11):781–783

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ngoc-Hung Nguyen.

Ethics declarations

Conflict of interest

Authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, NH., Pham, VA. An efficient IPVO based reversible data hiding method using four pixel-pairs. Multimed Tools Appl 82, 33303–33332 (2023). https://doi.org/10.1007/s11042-023-14669-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-023-14669-7

Keywords

Navigation