Skip to main content

Advertisement

Log in

A survey on data-driven iris spoof detectors: state-of-the-art, open issues and future perspectives

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

In the modern era of computing, the iris-based biometric systems are gaining significant attention for secured and automatic human authentication. However, past decades have witnessed numerous spoofing assaults on these iris-based recognition systems where an attacker impersonates an exact replica of biometrical information of the genuine user. Particularly, these direct attacks are targeted on the iris sensor module of the biometric system by presenting the fake artefacts of a bonafide iris trait. With the emergence of data-driven paradigm (i.e. handcrafted feature learners such as support vector machine (SVM), decision tree (DT), k-nearest neighbor (KNN), ensembles, etc. or automatic image features extraction-based classifiers such as convolutional neural networks (CNN), generative adversial networks (GAN)), mitigating these iris spoof attacks has become comparatively an easier and accurate task of computer vision. An iris spoof detector (ISD) is a mechanism through which the vitality of a presented iris trait is measured intelligently by classifying it as genuine or counterfeit. In this study, we explicate a taxonomy-based comparative analysis of state-of-the-art (SOTA) ISDs that employ machine learning or deep learning-based approaches. We expound a novel taxonomy for classifying ISDs based on underlying criterion such as feature type, learning algorithm, pre-trained models, data augmentation, hybrid, etc. Furthermore, we investigate and analyze various benchmark datasets employed in the various data-driven iris spoof detectors (D2ISD). We also illustrate prominent performance evaluation protocols that are widely adopted in the SOTA approaches. Though, pioneer contributions related to D2ISD is reported in the literature, but several potential open research problems still exist, that requisite a futuristic attention of the investigators in this active field of research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

The datasets used/generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Abdellatef E, Ismail NA, Abd Elrahman SESE, Ismail KN, Rihan M, Abd el-Samie FE (2019) Cancelable multi - biometric recognition system based on deep learning. Vis Comput 36(0123456789):1097–1109. https://doi.org/10.1007/s00371-019-01715-5

    Article  Google Scholar 

  2. Agarwal R and Jalal AS (2021) “Presentation attack detection system for fake Iris: a review,” Multimed. Tools Appl, https://doi.org/10.1007/s11042-020-10378-7.

  3. Agarwal R, Jalal AS, Arya KV (2020) Enhanced binary hexagonal Extrema pattern (EBHXEP) descriptor for Iris liveness detection. Wirel Pers Commun 115(3):2627–2643. https://doi.org/10.1007/s11277-020-07700-9

    Article  Google Scholar 

  4. Agarwal R, Jalal AS, Arya KV (2021) Local binary hexagonal Extrema pattern (LBHXEP): a new feature descriptor for fake iris detection. Vis Comput 37(6):1357–1368. https://doi.org/10.1007/s00371-020-01870-0

    Article  Google Scholar 

  5. Ahmadi N, Nilashi M, Samad S, Rashid TA, Ahmadi H (2019) An intelligent method for iris recognition using supervised machine learning techniques. Opt Laser Technol 120(December 2018):105701. https://doi.org/10.1016/j.optlastec.2019.105701

    Article  Google Scholar 

  6. Alaslni MG, Elrefaei LA (2019) Transfer learning with convolutional neural networks for IRIS recognition. Int J Artif Intell Appl 10(5):49–66. https://doi.org/10.5121/ijaia.2019.10505

    Article  Google Scholar 

  7. Bakkouri I, Afdel K (2020) Computer-aided diagnosis (CAD) system based on multi-layer feature fusion network for skin lesion recognition in dermoscopy images. Multimed Tools Appl 79(29–30):20483–20518. https://doi.org/10.1007/s11042-019-07988-1

    Article  Google Scholar 

  8. Bakkouri I, Afdel K, Benois-Pineau J, Catheline G, For the Alzheimer’s Disease Neuroimaging Initiativ (2022) BG-3DM2F: Bidirectional gated 3D multi-scale feature fusion for Alzheimer’s disease diagnosis, vol. 81, no. 8

  9. Bhatti UA, Huang M, Wang H, Zhang Y, Mehmood A, Di W (2018) Recommendation system for immunization coverage and monitoring. Hum Vaccines Immunother 14(1):165–171. https://doi.org/10.1080/21645515.2017.1379639

    Article  Google Scholar 

  10. Bhatti UA, Huang M, Wu D, Zhang Y, Mehmood A, Han H (2019) Recommendation system using feature extraction and pattern recognition in clinical care systems. Enterp Inf Syst 13(3):329–351. https://doi.org/10.1080/17517575.2018.1557256

    Article  Google Scholar 

  11. Bhatti UA, Yu Z, Li J, Nawaz SA, Mehmood A, Zhang K, Yuan L (2020) Hybrid watermarking algorithm using Clifford algebra with Arnold scrambling and chaotic encryption. IEEE Access 8:76386–76398. https://doi.org/10.1109/ACCESS.2020.2988298

    Article  Google Scholar 

  12. Bhatti UA, Zeeshan Z, Nizamani MM, Bazai S, Yu Z, Yuan L (2022) Assessing the change of ambient air quality patterns in Jiangsu Province of China pre-to post-COVID-19. Chemosphere 288(2):132569. https://doi.org/10.1016/j.chemosphere.2021.132569

    Article  Google Scholar 

  13. Bhatti UA et al (2022) Local Similarity-Based Spatial–Spectral Fusion Hyperspectral Image Classification With Deep CNN and Gabor Filtering. IEEE Trans Geosci Remote Sens 60. https://doi.org/10.1109/TGRS.2021.3090410

  14. Bhogal APS, Sollinger D, Trung P, Uhl A (2017) Non-reference image quality assessment for biometric presentation attack detection. Proc - 2017 5th Int Work Biometrics Forensics, IWBF 2017. https://doi.org/10.1109/IWBF.2017.7935080

  15. Boulkenafet Z, Komulainen J, Hadid A (2018) On the generalization of color texture-based face anti-spoofing. Image Vis Comput 77:1–9. https://doi.org/10.1016/j.imavis.2018.04.007

    Article  Google Scholar 

  16. Busch C (2017) “The ISO/IEC standards for testing of Presentation Attack Detection,”, [Online]. Available: https://christoph-busch.de/files/Busch-PAD-standards-170329.pdf.

  17. Chatterjee P, Yalchin A, Shelton J, Roy K, Yuan X, Edoh KD (2019) Presentation attack detection using wavelet transform and deep residual neural net, vol 11637. Springer International Publishing, LNCS

    Google Scholar 

  18. Chen C, Ross A (2018) “A Multi-Task Convolutional Neural Network for Joint Iris Detection and Presentation Attack Detection,” no. March

  19. Choudhary M, Tiwari V, Venkanna U (2019) An approach for iris contact lens detection and classification using ensemble of customized DenseNet and SVM. Futur Gener Comput Syst 101:1259–1270. https://doi.org/10.1016/j.future.2019.07.003

    Article  Google Scholar 

  20. Czajka A (2015) Pupil dynamics for iris liveness detection. IEEE Trans Inf Forensics Secur 10(4):726–735. https://doi.org/10.1109/TIFS.2015.2398815

    Article  Google Scholar 

  21. Czajka A, Bowyer KW (2018) Presentation attack detection for iris recognition: An assessment of the state-of-the-art. ACM Comput Surv 51(4). https://doi.org/10.1145/3232849

  22. Czajka A, Bowyer KW, Krumdick M, Vidalmata RG (2017) Recognition of image-orientation-based Iris spoofing. IEEE Trans Inf Forensics Secur 12(9):2184–2196. https://doi.org/10.1109/TIFS.2017.2701332

    Article  Google Scholar 

  23. Das P et al. (2020) “Iris Liveness Detection Competition (LivDet-Iris) - The 2020 Edition,” IJCB 2020 - IEEE/IAPR Int. Jt. Conf. Biometrics, https://doi.org/10.1109/IJCB48548.2020.9304941.

  24. Daugman J (1994) “Biometric Personal Identification System Based on Iris Analysis,” no. 19

  25. Dronky MR, Khalifa W, Roushdy M (2021) Using residual images with BSIF for iris liveness detection. Expert Syst Appl 182(March 2020):115266. https://doi.org/10.1016/j.eswa.2021.115266

    Article  Google Scholar 

  26. “FAKE IRIS DETECTION USING STRUCTURED LIGHT Connell J, N Ratha, James Gentile, Ruud Bolle (2013) Yorktown Heights , NY 10598 { jconnell , ratha } @ us . ibm . com,” pp. 8692–8696

  27. Fang M, Damer N, Boutros F, Kirchbuchner F, Kuijper A (2020) “Deep learning multi-layer fusion for an accurate iris presentation attack detection,” Proc. 2020 23rd Int. Conf. Inf. Fusion, FUSION 2020, https://doi.org/10.23919/FUSION45008.2020.9190424.

  28. Fang Z, Czajka A, Bowyer KW (2021) Robust iris presentation attack detection fusing 2D and 3D information. IEEE Trans Inf Forensics Secur 16:510–520. https://doi.org/10.1109/TIFS.2020.3015547

    Article  Google Scholar 

  29. Fang M, Damer N, Boutros F, Kirchbuchner F, Kuijper A (2021) Cross-database and cross-attack Iris presentation attack detection using micro stripes analyses. Image Vis Comput 105:104057. https://doi.org/10.1016/j.imavis.2020.104057

    Article  Google Scholar 

  30. Farmanbar M, Toygar Ö (2017) Spoof detection on face and palmprint biometrics. Signal, Image Video Process 11(7):1253–1260. https://doi.org/10.1007/s11760-017-1082-y

    Article  Google Scholar 

  31. Galbally J, Marcel S, Fierrez J (2014) Image quality assessment for fake biometric detection: application to Iris, fingerprint, and face recognition. IEEE Trans Image Process 23(2):710–724. https://doi.org/10.1109/TIP.2013.2292332

    Article  MathSciNet  MATH  Google Scholar 

  32. Gautam G, Mukhopadhyay S (2018) “Contact Lens Detection using Transfer Learning with Deep Representations,” Proc. Int. Jt. Conf. Neural Networks, vol. 2018-July, pp. 1–8, https://doi.org/10.1109/IJCNN.2018.8489590.

  33. Gomez-Barrero M, Rathgeb C, Li G, Ramachandra R, Galbally J, Busch C (2018) Multi-biometric template protection based on bloom filters. Inf Fusion 42:37–50. https://doi.org/10.1016/j.inffus.2017.10.003

    Article  Google Scholar 

  34. Goshtasby AAA (2012) Advances in computer vision and pattern recognition

  35. Gragnaniello D, Sansone C, Verdoliva L (2015) Iris liveness detection for mobile devices based on local descriptors. Pattern Recogn Lett 57:81–87. https://doi.org/10.1016/j.patrec.2014.10.018

    Article  Google Scholar 

  36. Gragnaniello D, Poggi G, Sansone C, Verdoliva L (2015) An investigation of local descriptors for biometric spoofing detection. IEEE Trans Inf Forensics Secur 10(4):849–863. https://doi.org/10.1109/TIFS.2015.2404294

    Article  Google Scholar 

  37. Gupta R, Sehgal P (2016) A survey of attacks on iris biometric systems. Int J Biometeorol 8(2):145–178. https://doi.org/10.1504/IJBM.2016.077833

    Article  Google Scholar 

  38. Gupta P, Behera S, Vatsa M, Singh R (2014) On iris spoofing using print attack. Proc - Int Conf Pattern Recognit:1681–1686. https://doi.org/10.1109/ICPR.2014.296

  39. He K, Zhang X, Ren S, Sun J (2016) “Deep residual learning for image recognition,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., vol. 2016-Decem, pp. 770–778, https://doi.org/10.1109/CVPR.2016.90

  40. Hu Y, Sirlantzis K, Howells G (2016) Iris liveness detection using regional features. Pattern Recogn Lett 82:242–250. https://doi.org/10.1016/j.patrec.2015.10.010

    Article  Google Scholar 

  41. Hu Q, Yin S, Ni H, Huang Y (2020) An end to end deep neural network for Iris recognition. Procedia Comput Sci 174(2019):505–517. https://doi.org/10.1016/j.procs.2020.06.118

    Article  Google Scholar 

  42. Huang X, Ti C, Hou QZ, Tokuta A, Yang R (2013) An experimental study of pupil constriction for liveness detection. Proc IEEE Work Appl Comput Vis:252–258. https://doi.org/10.1109/WACV.2013.6475026

  43. Hughes K, Bowyer KW (2013) Detection of contact-lens-based iris biometric spoofs using stereo imaging. Proc Annu Hawaii Int Conf Syst Sci:1763–1772. https://doi.org/10.1109/HICSS.2013.172

  44. Ishfaq DSR, Selwal A (2021) “Fingerprint Spoofing Attacks and their Deep Learning-enabled Remediation: State-of-the-art, Taxonomy, and Future Directions,” pp. 22–28

  45. Jain AK, Ross A, Prabhakar S (2004) An introduction to biometric recognition. IEEE Trans Circuits Syst Video Technol 14(1):4–20. https://doi.org/10.1109/TCSVT.2003.818349

    Article  Google Scholar 

  46. Jain AK, Flynn P, Ross AA (2007) Handbook of biometrics

  47. Jamdar SD et al (2017) Biometrics: A Tool for Information Security Anil. IEEE Trans Inf Forensics Secur 1(Iccmc):125–143

    Google Scholar 

  48. Kapur PK, Singh G, Klochkov YS, Kumar U (2020) Decision analytics applications in industry.

  49. Kaur B (2020) Iris spoofing detection using discrete orthogonal moments. Multimed Tools Appl 79(9–10):6623–6647. https://doi.org/10.1007/s11042-019-08281-x

    Article  Google Scholar 

  50. Kaur B, Singh S, Kumar J (2019) Cross-sensor iris spoofing detection using orthogonal features. Comput Electr Eng 73:279–288. https://doi.org/10.1016/j.compeleceng.2018.12.002

    Article  Google Scholar 

  51. Kohli N, Yadav D, Vatsa M, Singh R (2013) Revisiting iris recognition with color cosmetic contact lenses. Proc - 2013 Int Conf Biometrics, ICB 2013 1. https://doi.org/10.1109/ICB.2013.6613021

  52. Kohli N, Yadav D, Vatsa M, Singh R, Noore A (2018) “Synthetic iris presentation attack using iDCGAN,” IEEE Int. Jt. Conf. Biometrics, IJCB 2017, vol. 2018-Janua, pp. 674–680 https://doi.org/10.1109/BTAS.2017.8272756.

  53. O. V Komogortsev, S. Marcos, A. Karpov, and S. Marcos (2013) “Liveness Detection via Oculomotor Plant Characteristics : Attack of Mechanical Replicas”

  54. Kuehlkamp A, Pinto A, Rocha A, Bowyer KW, Czajka A (2019) Ensemble of Multi-View Learning Classifiers for cross-domain Iris presentation attack detection. IEEE Trans Inf Forensics Secur 14(6):1419–1431. https://doi.org/10.1109/TIFS.2018.2878542

    Article  Google Scholar 

  55. Liu N, Li H, Zhang M, Liu J, Sun Z, Tan T (2016) Accurate iris segmentation in non-cooperative environments using fully convolutional networks. 2016 Int Conf Biometrics, ICB:2016. https://doi.org/10.1109/ICB.2016.7550055

  56. Liu M, Zhou Z, Shang P, Xu D (2020) Fuzzified image enhancement for deep learning in Iris recognition. IEEE Trans Fuzzy Syst 28(1):92–99. https://doi.org/10.1109/TFUZZ.2019.2912576

    Article  Google Scholar 

  57. Long M, Zeng Y (2019) “Detecting Iris Liveness with Batch Normalized Convolutional Neural Network,” vol. 58, no. 2, pp. 493–504, https://doi.org/10.32604/cmc.2019.04378.

  58. Mehmood R, Selwal A (2020) Polynomial based fuzzy vault technique for template security in fingerprint biometrics. Int Arab J Inf Technol 17(6):926–934. https://doi.org/10.34028/iajit/17/6/11

    Article  Google Scholar 

  59. Menotti D, Chiachia G, Pinto A, Robson Schwartz W, Pedrini H, Xavier Falcao A, Rocha A (2015) Deep representations for Iris, face, and fingerprint spoofing detection. IEEE Trans Inf Forensics Secur 10(4):864–879. https://doi.org/10.1109/TIFS.2015.2398817

    Article  Google Scholar 

  60. Minaee S, Abdolrashidi A (2019) “DeepIris: Iris Recognition Using A Deep Learning Approach,” [Online]. Available: http://arxiv.org/abs/1907.09380.

  61. Pala F Bhanu B (2017) “Iris Liveness Detection by Relative Distance Comparisons,” IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. Work., vol. 2017-July, pp. 664–671 https://doi.org/10.1109/CVPRW.2017.95.

  62. “Presentation attack detection algorithm for face and iris biometrics” (2014) pp. 1387–1391

  63. Puhan NB, Sudha N, Hegde S (2011) A new iris liveness detection method against contact lens spoofing. Proc Int Symp Consum Electron ISCE:71–74. https://doi.org/10.1109/ISCE.2011.5973786

  64. Raghavendra R, Busch C (2014) Presentation attack detection on visible spectrum iris recognition by exploring inherent characteristics of Light Field Camera. IJCB 2014–2014 IEEE/IAPR Int Jt Conf Biometrics. https://doi.org/10.1109/BTAS.2014.6996226

  65. Raghavendra R, Busch C (2015) Robust scheme for iris presentation attack detection using multiscale binarized statistical image features. IEEE Trans Inf Forensics Secur 10(4):703–715. https://doi.org/10.1109/TIFS.2015.2400393

    Article  Google Scholar 

  66. Raja KB, Raghavendra R, Busch C (2015) “Presentation attack detection using Laplacian decomposed frequency response for visible spectrum and Near-Infra-Red iris systems,” 2015 IEEE 7th Int. Conf. Biometrics Theory, Appl. Syst. BTAS 2015, https://doi.org/10.1109/BTAS.2015.7358790.

  67. Ratha NK, Connell JH, Bolle RM (2001) An analysis of minutiae matching strength. Lect Notes Comput Sci (including Subser Lect Notes Artif Intell Lect Notes Bioinformatics) 2091 LNCS(2015):223–228. https://doi.org/10.1007/3-540-45344-x_32

  68. Ribeiro E, Uhl A (2017) Exploring Texture Transfer Learning via Convolutional Neural Networks for Iris Super Resolution. Lect Notes Informatics (LNI), Proc - Ser Gesellschaft fur Inform (00736):0–4. https://doi.org/10.23919/BIOSIG.2017.8053505

  69. Rigas I, Komogortsev OV (2015) Eye movement-driven defense against iris print-attacks. Pattern Recogn Lett 68:316–326. https://doi.org/10.1016/j.patrec.2015.06.011

    Article  Google Scholar 

  70. Rui Z, Yan Z (2019) A survey on biometric authentication: toward secure and privacy-preserving identification. IEEE Access 7(c):5994–6009. https://doi.org/10.1109/ACCESS.2018.2889996

    Article  Google Scholar 

  71. Sardar M, Banerjee S, Mitra S (2020) Iris segmentation using interactive deep learning. IEEE Access 8:219322–219330. https://doi.org/10.1109/ACCESS.2020.3041519

    Article  Google Scholar 

  72. Selwal A, Gupta S, Kumar S (2016) A Scheme for Template Security At Feature Fusion Level in Multimodal Biometric System. Adv Sci Technol Res J 10(31):23–30. https://doi.org/10.12913/22998624/64062

    Article  Google Scholar 

  73. Selwal A, Gupta SK, Surender (2017) Low overhead octet indexed template security scheme for multi-modal biometric system. J Intell Fuzzy Syst 32(5):3325–3337. https://doi.org/10.3233/JIFS-169274

    Article  Google Scholar 

  74. Sequeira AF, Oliveira HP, Monteiro JC, Monteiro JP, Cardoso JS (2014) “MobILive 2014 - Mobile Iris Liveness Detection Competition,” IJCB 2014–2014 IEEE/IAPR Int. Jt. Conf. Biometrics, https://doi.org/10.1109/BTAS.2014.6996290.

  75. Sharma D, Selwal A (2021) An intelligent approach for fingerprint presentation attack detection using ensemble learning with improved local image features, no. 0123456789. Springer US.

  76. Sharma D, Selwal A (2021) FinPAD: State-of-the-art of fingerprint presentation attack detection mechanisms, taxonomy and future perspectives. Pattern Recogn Lett 152(March 2005):225–252. https://doi.org/10.1016/j.patrec.2021.10.013

    Article  Google Scholar 

  77. Sharma D, Selwal A (2021) HyFiPAD : a hybrid approach for fingerprint presentation attack detection using local and adaptive image features. Vis Comput 38(0123456789):2999–3025. https://doi.org/10.1007/s00371-021-02173-8

    Article  Google Scholar 

  78. Silva P, Luz E, Baeta R, Pedrini H, Falcao AX, Menotti D (2015) “An Approach to Iris Contact Lens Detection Based on Deep Image Representations,” Brazilian Symp. Comput. Graph. Image Process., vol. 2015-Octob, pp. 157–164https://doi.org/10.1109/SIBGRAPI.2015.16.

  79. Simonyan K, Zisserman A (2015) “Very deep convolutional networks for large-scale image recognition,” 3rd Int. Conf. Learn. Represent. ICLR 2015 - Conf. Track Proc., pp. 1–14

  80. Singh M, Singh R, Ross A (2019) A comprehensive overview of biometric fusion. Inf Fusion 52:187–205. https://doi.org/10.1016/j.inffus.2018.12.003

    Article  Google Scholar 

  81. Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z (2016) Rethinking the Inception Architecture for Computer Vision. Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit 2016:2818–2826. https://doi.org/10.1109/CVPR.2016.308

    Article  Google Scholar 

  82. Tan M, Le QV (2019) “EfficientNet: Rethinking model scaling for convolutional neural networks,” 36th Int. Conf. Mach. Learn. ICML 2019, vol. 2019-June, pp. 10691–10700

  83. Tann H, Zhao H, Reda S (2019) A resource-efficient embedded iris recognition system using fully convolutional networks. ACM J Emerg Technol Comput Syst 16(1):1–23. https://doi.org/10.1145/3357796

    Article  Google Scholar 

  84. Tapia JE, Gonzalez S, Busch C (2022) Iris liveness detection using a Cascade of dedicated deep learning networks. IEEE Trans Inf Forensics Secur 17:42–52. https://doi.org/10.1109/TIFS.2021.3132582

    Article  Google Scholar 

  85. Therar HM, Mohammed LDEA, Ali APDAJ (2021) “Multibiometric System for Iris Recognition Based Convolutional Neural Network and Transfer Learning,” IOP Conf. Ser. Mater. Sci. Eng., vol. 1105, no. 1, p. 012032, https://doi.org/10.1088/1757-899x/1105/1/012032.

  86. Tirunagari S, Poh N, Windridge D, Iorliam A, Suki N, Ho ATS (2015) Detection of face spoofing using visual dynamics. IEEE Trans Inf Forensics Secur 10(4):762–777. https://doi.org/10.1109/TIFS.2015.2406533

    Article  Google Scholar 

  87. Tobji R, Di W, Ayoub N (2019) FMnet: Iris segmentation and recognition by using fully and multi-scale CNN for biometric security. Appl Sci 9(10):1–17. https://doi.org/10.3390/app9102042

    Article  Google Scholar 

  88. Varkarakis V, Bazrafkan S, Corcoran P (2018) “A deep learning approach to segmentation of distorted iris regions in head-mounted displays,” 2018 IEEE Games, Entertain. Media Conf. GEM 2018, pp. 402–406 https://doi.org/10.1109/GEM.2018.8516446

  89. Yadav D, Kohli N, Doyle JS, Singh R, Vatsa M, Bowyer KW (2014) Unraveling the effect of textured contact lenses on iris recognition. IEEE Trans Inf Forensics Secur 9(5):851–862. https://doi.org/10.1109/TIFS.2014.2313025

    Article  Google Scholar 

  90. Yambay D, Doyle JS, Bowyer KW, Czajka A, Schuckers S (2014) “LivDet-iris 2013 - Iris Liveness Detection Competition 2013,” IJCB 2014–2014 IEEE/IAPR Int. Jt. Conf. Biometrics, https://doi.org/10.1109/BTAS.2014.6996283.

  91. Yambay D, Czajka A, Ii F (2015) “LivDet-Iris 2015 – Iris liveness detection competition 2015 University of Naples”

  92. Yambay D et al. (2018) “LivDet iris 2017 - Iris liveness detection competition 2017,” IEEE Int. Jt. Conf. Biometrics, IJCB 2017, vol. 2018-Janua, pp. 733–741, https://doi.org/10.1109/BTAS.2017.8272763.

  93. Yang Y, Shen P, Chen C (2019) A robust iris segmentation using fully convolutional network with dilated convolutions. Proc - 2018 IEEE Int Symp Multimedia, ISM 2018:9–16. https://doi.org/10.1109/ISM.2018.00010

  94. Zhang H, Sun Z, Tan T (2010) Contact lens detection based on weighted LBP. Proc - Int Conf Pattern Recognit:4279–4282. https://doi.org/10.1109/ICPR.2010.1040

  95. Zhang H, Sun Z, Tan T, Wang J (2011) “Learning hierarchical visual codebook for Iris liveness detection”

  96. Zhao Z, Kumar A (2017) “Towards More Accurate Iris Recognition Using Deeply Learned Spatially Corresponding Features,” Proc. IEEE Int. Conf. Comput. Vis., vol. 2017-Octob, pp. 3829–3838, https://doi.org/10.1109/ICCV.2017.411.

  97. Zhao Z, Kumar A (2019) A deep learning based unified framework to detect, segment and recognize irises using spatially corresponding features. Pattern Recogn 93:546–557. https://doi.org/10.1016/j.patcog.2019.04.010

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Palak Verma.

Ethics declarations

Competing interests

All the authors declare that they do not have any conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, P., Selwal, A. & Sharma, D. A survey on data-driven iris spoof detectors: state-of-the-art, open issues and future perspectives. Multimed Tools Appl 82, 19745–19792 (2023). https://doi.org/10.1007/s11042-022-14014-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-022-14014-4

Keywords

Navigation