Skip to main content
Log in

HyFiPAD: a hybrid approach for fingerprint presentation attack detection using local and adaptive image features

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

With the pervasiveness of secured biometric authentication applications, the fingerprint-based identification system has fascinated much attention recently. However, the major detriment is their recognition sensors are vulnerable to presentation or spoofing attacks from fake fingerprint artifacts. To resolve these issues, a viable anti-deception countermeasure known as presentation attack detection (PAD) mechanism is developed. As handcrafted feature-based classification techniques exhibit encouraging results in computer vision, they are widely employed in fingerprint spoof detection. Notably, the single-feature-based techniques do not perform uniformly over different spoofing and sensing technologies. In this research work, we expound a new hybrid fingerprint presentation attack detection approach (HyFiPAD) that discriminates live and fake fingerprints using majority voting ensemble build on three local and adaptive textural image features. We propose a new descriptor (i.e., a variant of LBP) which is termed as Local Adaptive Binary Pattern (LABP). Thus, the notion of proposed LABP is used to extract more detailed micro-textural features from the fingerprint images. Our LABP features are combined with an existing Complete Local Binary Pattern (CLBP) descriptor to learn two respective SVM classifiers and additionally a sequential model is trained with the manually extracted Binary Statistical Image Features (BSIF). The experiments are performed on benchmark anti-spoofing datasets namely; LivDet 2009, LivDet 2011, LivDet 2013, and LivDet 2015, where an average classification error rate (ACER) of 4.11, 3.19, 2.88, and 2.97% is, respectively, achieved. The overall experimental analysis of the HyFiPAD demonstrates superiority against majority of the state-of-the-art methods. In addition, the proposed technique yields a promising performance on cross-database and cross-sensor liveness detection tests, claiming good generalization capability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Jain, A.K., Ross, A., Prabhakar, S.: An Introduction to Biometric Recognition. IEEE Trans. Circuits Syst. Video Technol. 14(1), 4–20 (2004)

    Article  Google Scholar 

  2. Jain, A.K., Ross, A.: Handbook of Biometrics, pp. 1–22. Springer, London (2008)

    Book  Google Scholar 

  3. Minaee, S., Azimi, E., Abdolrashidi, A.: Fingernet: Pushing the limits of fingerprint recognition using convolutional neural network. arXiv preprint arXiv:1907.12956 (2019)

  4. Ratha, N.K., Connell, J.H., Bolle, R.M.: An analysis of minutiae matching strength. In: Proc. AVBPA 2001, 3rd International Conference on Audio- and Video-Based Biometric Person Authentication, pp. 223–228 (2001)

  5. Ghiani, L. et al.: LivDet 2013 fingerprint liveness detection competition 2013. In: 2013 international conference on biometrics (ICB), pp. 1–6 (2013)

  6. Xia, Z., Lv, R., Zhu, Y., Ji, P., Sun, H.: Fingerprint liveness detection using gradient-based texture features. Signal, Image Video Process. 11(2), 381–388 (2017)

    Article  Google Scholar 

  7. Ghiani, L., Hadid, A., Marcialis, G.L., Roli, F.: Fingerprint liveness detection using local texture features. IET Biometr. 6(3), 224–231 (2017)

    Article  Google Scholar 

  8. Jiang, Y., Liu, X.: Uniform local binary pattern for fingerprint liveness detection in the gaussian pyramid. J. Electr. Comput. Eng. 2018, 1–9 (2018)

    Google Scholar 

  9. Sharma, R.P., Dey, S.: Fingerprint liveness detection using local quality features. Vis. Comput. 35, 1393–1410 (2019)

    Article  Google Scholar 

  10. Xia, Z., Yuan, C., Lv, R., Sun, X., Xiong, N.N., Shi, Y.Q.: A novel weber local binary descriptor for fingerprint liveness detection. IEEE Trans. Syst. Man, Cybern. Syst. 50(4), 1526–1536 (2020)

    Article  Google Scholar 

  11. Moon, Y.S., Chen, J.S., Chan, K.C., So, K., Woo, K.C.: Wavelet based fingerprint liveness detection. Electron. Lett. 41(20), 2–4 (2005)

    Article  Google Scholar 

  12. Nikam, S.B., Science, C., Science, C.: Texture and wavelet-based spoof fingerprint detection for fingerprint biometric systems. In: 1st International Conference on Emerging Trends in Engineering and Technology Texture, pp 675–680 (2008)

  13. Zhang, Y., Fang, S., Xie, Y., Xu, T.: Fake fingerprint detection based on wavelet analysis and local binary pattern. In: Sun, Z., Shan, S., Sang, H., Zhou, J., Wang, Y. (eds.) Biometric recognition, CCBR (2014) Lecture notes in computer science, pp. 191–198. Springer, Cham (2014)

    Google Scholar 

  14. Gragnaniello, D., Poggi, G., Sansone, C., Verdoliva, L.: Fingerprint liveness detection based on weber local image descriptor. In: 2013 IEEE workshop on biometric measurements and systems for security and medical applications, September (2013)

  15. Kim, W.: Fingerprint liveness detection using local coherence patterns. IEEE Signal Process. Lett. 1(1), 1–5 (2016)

    Google Scholar 

  16. Gragnaniello, D., Poggi, G., Verdoliva, L.: Local contrast phase descriptor for fingerprint liveness detection. Pattern Recogn. 48(4), 1050–1058 (2015)

    Article  Google Scholar 

  17. Gragnaniello, D., Poggi, G., Sansone, C., Verdoliva, L.: Wavelet-Markov local descriptor for detecting fake fingerprints. Electron. Lett. 50(6), 439–441 (2014)

    Article  Google Scholar 

  18. Dubey, R.K., Goh, J., Thing, V.L.L.: Fingerprint liveness detection from single image using low-level features and shape analysis. IEEE Trans. Inf. Forensics Secur. 11(7), 1461–1475 (2016)

    Article  Google Scholar 

  19. Reddy, P.V., Kumar, A., Member, S., Rahman, S.M.K., Mundra, T.S.: A new antispoofing approach for biometric devices. IEEE Trans. Biomed. Circuits Syst. 2(4), 328–337 (2008)

    Article  Google Scholar 

  20. Drahanský, M., Nötzel, R., Funk, W.: Liveness detection based on fine movements of the fingertip surface. In: Proceedings of the 2006 IEEE Workshop on Information Assurance United States Military Academy, West Point, pp. 42–47 (2006)

  21. Baldisserra, D., Franco, A., Maio, D., Maltoni, D., Bologna, U.: Fake fingerprint detection by odor analysis. In: Z. D. and J. A. K. (eds.) Advances in Biometrics, ICB 2006, Lecture Notes in Computer Science, pp. 265–272. Springer, Berlin, Heidelberg (2006)

  22. Martinsen, Ø.G., Member, S., Clausen, S., Nysæther, J.B., Grimnes, S.: Utilizing characteristic electrical properties of the epidermal skin layers to detect fake fingers in biometric fingerprint systems—a pilot study. IEEE Trans. Biomed. Eng. 54(5), 891–894 (2007)

    Article  Google Scholar 

  23. Galbally, J., Fierrez, J., Cappelli, R.: An introduction to fingerprint presentation attack detection. In: Marcel, S., Nixon, M., Fierrez, J., Evans, N. (eds.) Handbook of Biometric Anti-Spoofing. Advances in Computer Vision and Pattern Recognition. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-92627-8_1

    Chapter  Google Scholar 

  24. Coli, P., Marcialis, G.L., Roli, F.: Fingerprint silicon replicas: static and dynamic features for vitality detection. Int. J. Image Graph. 8(4), 495–512 (2008)

    Article  Google Scholar 

  25. Bhanarkar, A., Doshi, P.: Joint time frequency analysis based liveness fingerprint detection. In: 2013 IEEE second international conference on image information processing (ICIIP-2013), pp. 166–169 (2013)

  26. Galbally, J., Alonso-Fernandez, F., Fierrez, J., Ortega-Garcia, J.: A high performance fingerprint liveness detection method based on quality related features. Futur. Gener. Comput. Syst. 28(1), 311–321 (2012)

    Article  Google Scholar 

  27. Galbaly, J., Alonso-Fernandez, F., Fierrez, J., Ortega-Garcia, J.: Fingerprint liveness detection based on quality measures. In: 2009 1st IEEE International Conference on Biometrics, Identity and Security (BIdS), pp. 1–9 (2009)

  28. Marasco, E., Sansone, C.: An anti-spoofing technique using multiple textural features in fingerprint scanners. In: 2010 IEEE Workshop on Biometric Measurements and Systems for Security and Medical Applications, pp. 8–14 (2010)

  29. Espinoza, M., Champod, C., Margot, P.: Vulnerabilities of fingerprint reader to fake fingerprints attacks. Forensic Sci. Int. 204(1–3), 41–49 (2011)

    Article  Google Scholar 

  30. Ghiani, L., Marcialis, G.L., Roli, F.: Fingerprint liveness detection by local phase quantization. In: 21st International Conference on Pattern Recognition (ICPR 2012), no. ICPR, pp. 537–540 (2012)

  31. Manivannan, N., Balachandran, W.: Active pore detection for liveness in fingerprint identification system. In: 19th Telecommunications forum TELFOR 2011, pp. 619–622 (2011)

  32. Lu, M., Chen, Z., Sheng, W.: A pore-based method for fingerprint liveness detection. In: 2015 International Conference on Computer Science and Applications A, pp. 14–15 (2015)

  33. Antonelli, A., Cappelli, R., Maio, D., Maltoni, D.: A new approach to fake finger detection based on skin distortion. In: Zhang, D. (ed.) ICB 2006, LNCS, Springer, Berlin, Heidelberg, pp. 221–228 (2006)

  34. Jia, J., Cai, L., Zhang, K., Chen, D.: A new approach to fake finger detection based on skin elasticity analysis. In: S.-W. L. and Li, S.Z. (eds.) ICB 2007, LNCS 4642, pp. 309–318. Springer, Berlin, Heidelberg (2007)

  35. Abhyankar, A., Schuckers, S.: Integrating a wavelet based perspiration liveness check with fingerprint recognition. Pattern Recogn. 42, 452–464 (2009)

    Article  MATH  Google Scholar 

  36. Abhyankar, A., Schuckers, S.: Modular decomposition of fingerprint time series captures for the liveness check. Int. J. Comput. Electr. Eng. 2(3), 1793–8163 (2010)

    Google Scholar 

  37. Parthasaradhi, S.T.V., Derakhshani, R., Hornak, L.A., Schuckers, S.A.C.: Time-series detection of perspiration as a liveness test in fingerprint devices. IEEE Trans. Syst. Man, Cybern. C Appl. Rev. 35(3), 335–343 (2005)

    Article  Google Scholar 

  38. Jia, X.Y., Cao, K., Zang, Y., Zhang, N., Dai, R., Zhu, X., Tian, J.: nMulti-scalelocal binary pattern with filters for spoof fingerprintdetection. Inf. Sci. 268, 91–102 (2014). https://doi.org/10.1016/j.ins.2013.06.041

    Article  Google Scholar 

  39. Ghiani, L., Hadid, A., Marcialis, G.L., Roli, F. : Fingerprint liveness detection using binarized statistical image features. In: 2013 IEEE 6th International Conference on Biometrics: Theory, Applications and Systems (BTAS), pp. 1–6 (2013)

  40. Li, Q., Chan, P.P.K.: Fingerprint liveness detection based on binarized statistical image feature with sampling from Gaussian distribution. In: Proceedings of the 2014 International Conference on Wavelet Analysis and Pattern Recognition, pp. 13–16 (2014)

  41. Agarwal, S., Chowdary, C.R.: A-stacking and a-bagging: adaptive versions of ensemble learning algorithms for spoof fingerprint detection. Expert Syst. Appl. 146, 113160 (2019)

    Article  Google Scholar 

  42. González-soler, L.J., Gomez-barrero, M., Chang, L., Pérez-suárez, A., Busch, C., Member, S.: Fingerprint presentation attack detection based on local features encoding for unknown attacks. IEEE Access 9, 5806–5820 (2021)

    Article  Google Scholar 

  43. Minaee, S., Abdolrashidi, A., Su, H., Bennamoun, M., Apr, C.V.: Biometric recognition using deep learning : a survey (2021)

  44. Nogueira, R.F., De Alencar, R.: Evaluating software-based fingerprint liveness detection using convolutional networks and local binary patterns. In: 2014 IEEE Workshop on Biometric Measurements and Systems for Security and Medical Applications (BIOMS) Proceedings, Rome, pp. 22–29 (2014)

  45. Wang, C., Li, K., Wu, Z., Zhao, Q.: A DCNN based fingerprint liveness detection algorithm with voting strategy. In: (2015) Chinese Conference on Biometric Recognition, pp. 241–249 (2015)

  46. Nogueira, R.F., Lotufo, R.D.A., Machado, R.C.: Fingerprint liveness detection using convolutional neural networks. IEEE Trans. Inf. Forens. Secur. 11(6), 1206–1213 (2016)

    Article  Google Scholar 

  47. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional convolutional neural networks. Nips 1, 1–35 (2012)

    Google Scholar 

  48. Park, E., Kim, W., Li, Q., Kim, J., Kim, H.: Fingerprint liveness detection using CNN features of random sample patches. In: BIOSIG 2016, Lecture Notes in Informatics, Geslleschaft fur Informatic, Bonn (2016)

  49. Toosi, A.; Cumani, S. Bottino, A.: CNN Patch–Based Voting for Fingerprint Liveness Detection. In: Proceedings of the 9th International Joint Conference on Computational Intelligence - IJCCI, ISBN 978-989-758-274-5 ISSN 2184-2825, pp. 158-165 (2017). https://doi.org/10.5220/0006582101580165

  50. Lazimul, L.T.P., Binoy, D.L.: Fingerprint liveness detection using convolutional neural network and fingerprint image enhancement. In: 2017 Int. Conf. Energy, Commun. Data Anal. Soft Comput., pp. 731–735 (2017)

  51. Jung, H.Y., Heo, Y.S.: Fingerprint liveness map construction using convolutional neural network. Electron. Lett. 54(9), 8–9 (2018)

    Article  Google Scholar 

  52. De Souza, G.B., Felipe, D., Gonc, R., Papa, P., Marana, A.N.: Deep features extraction for robust fingerprint spoofing attack detection. JAISCR 9(1), 41–49 (2019)

    Google Scholar 

  53. Zhang, Y., Shi, D., Zhan, X., Cao, D., Zhu, K., Li, Z.: Slim-ResCNN : a deep residual convolutional neural network for fingerprint liveness detection. IEEE Access 7, 91476–91487 (2019)

    Article  Google Scholar 

  54. Yuan, C., Xia, Z., Jiang, L.: Fingerprint liveness detection using an improved CNN with image scale equalization. IEEE Access 7, 26953–26966 (2019)

    Article  Google Scholar 

  55. Uliyan, D.M., Sadeghi, S., Jalab, H.A.: Anti-spoofing method for fingerprint recognition using patch based deep learning machine. Eng. Sci. Technol. Int. J. 2, 264–273 (2020)

    Google Scholar 

  56. Zhang, Y., Pan, S., Zhan, X., Li, Z., Gao, M., Gao, C.: FLDNet: light dense CNN for fingerprint liveness detection. IEEE Access 8, 84141–84152 (2020)

    Article  Google Scholar 

  57. Zhang, Y., Gao, C., Xu, Y., Qiu, H.: A score-level fusion of fingerprint matching with fingerprint liveness detection. IEEE Access 8, 183391–183400 (2020)

    Article  Google Scholar 

  58. Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution gray scale and rotation invariant texture classification with local binary patterns. Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformat.) 1842, 404–420 (2000)

    MATH  Google Scholar 

  59. Guo, Z., Zhang, L., Zhang, D.: A completed modeling of local binary pattern operator for texture classification. IEEE Trans. Image Process. 19(6), 1657–1663 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  60. Kannala, J., Rahtu, E.: BSIF: binarized statistical image features. In: Proc. - Int. Conf. Pattern Recognit., pp. 1363–1366 (2012)

  61. Vapnik, V.F., Lerner, A.Y.: Pattern recognition using generalized portraits. Autom. Remote Control 24(6), 774–780 (1963)

    Google Scholar 

  62. Marcialis, G.L. et al.: First international fingerprint liveness detection competition-LivDet 2009. In: Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformat.), vol. 5716 LNCS, pp. 12–23 (2009)

  63. Yambay, D., Ghiani, L., Denti, P., Marcialis, G.L., Roli, F., Schuckers, S.: LivDet 2011—Fingerprint liveness detection competition 2011. In: Proc.—2012 5th IAPR Int. Conf. Biometrics, ICB 2012, pp. 208–215 (2012)

  64. Mura, V., Ghiani, L., Marcialis, G.L., Roli, F., Yambay, D.A., Schuckers, S.A.: LivDet 2015 fingerprint liveness detection competition 2015, In: 2015 IEEE 7th Int. Conf. Biometrics Theory, Appl. Syst. BTAS 2015, pp. 0–5 (2015)

  65. Galbally, J., Marcel, S., Fierrez, J.: Image quality assessment for fake biometric detection: application to iris, fingerprint, and face recognition. IEEE Trans. Image Process. 23(2), 710–724 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  66. Ojansivu, V., Heikkil, J.: Blur insensitive texture classification using local phase quantization ville. In: ICISP, LNCS 5099. Springer, Berlin, Heidelberg, pp. 236–243 (2008)

  67. Park, E., Cui, X., Hai, T., Nguyen, B., Kim, H.: Presentation attack detection using a tiny fully convolutional network. IEEE Trans. Inf. Forens. Secur. PP(C), 1 (2019)

    Google Scholar 

  68. Yuan, C., Xia, Z., Sun, X., Member, S., Wu, Q.M.J.: Deep residual network with adaptive learning framework for fingerprint liveness detection. IEEE Trans. Cogn. Dev. Syst. PP(C), 1 (2019)

    Google Scholar 

  69. Jian, W.E.N., Zhou, Y., Liu, H.: Densely connected convolutional network optimized by genetic algorithm for fingerprint liveness detection. IEEE Access 9, 2229–2243 (2021)

    Article  Google Scholar 

  70. Alshdadi, A., Mehboob, R., Dawood, H., Alassafi, M.O., Alghamdi, R., Dawood, H.: Exploiting Level 1 and Level 3 features of fingerprints for liveness detection. Biomed. Signal Process. Control 61, 102039 (2020)

    Article  Google Scholar 

  71. Yuan, C., Sun, X.: Fingerprint liveness detection using histogram of oriented gradient based texture feature. J. Internet Technol. 19, 1499–1508 (2018)

    Google Scholar 

  72. Chugh, T., Member, S., Cao, K., Jain, A.K., Fellow, L.: Fingerprint spoof buster: use of minutiae-centered patches. IEEE Trans. Inf. Forens. Secur. 6013(c), 1–13 (2018)

    Google Scholar 

  73. Pereira, L.F.A., Pinheiro, H.N.B., Cavalcanti, G.D.C.: Spatial surface coarseness analysis: technique for fingerprint spoof detection. IEEE Int. Conf. Image Process. (ICIP) 49(4), 13–14 (2016)

    Google Scholar 

Download references

Acknowledgements

The LivDet datasets employed in this research are kindly provided by Clarkson University for which authors express their gratitude.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepika Sharma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Appendix Table

Table 11 A summary of state-of-the-art fingerprint PAD techniques

11.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, D., Selwal, A. HyFiPAD: a hybrid approach for fingerprint presentation attack detection using local and adaptive image features. Vis Comput 38, 2999–3025 (2022). https://doi.org/10.1007/s00371-021-02173-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-021-02173-8

Keywords

Navigation