Skip to main content
Log in

Multi-scale low-rank approximation method for image denoising

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Nonlocal self-similarity (NSS) as a prior has been widely used in image denoising techniques, such as block-matching and 3-D filtering (BM3D) and weighted nuclear norm minimization (WNNM). However, for local regions that do not have sufficiently similar structures in the image, these methods usually produce ringing artifacts. In light of the fact that NSS exists within both the same scale and different scales, this paper proposes an image denoising method that simultaneously explores multi-scale NSS prior and low-rank prior of natural images. Specifically, we first select similar patches from different scales to make full use of multi-scale NSS prior. Then, a constrained nuclear norm minimization model is introduced to account for low-rank prior. Finally, eigenvalue thresholding technique is exploited to obtain the solution. We demonstrate the proposed method on both synthetic and real noisy image denoising. Results show competitive performance in terms of quantification and visualization compared to state-of-the-art competing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Aharon M, Elad M, Bruckstein A (2006) K -SVD : an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans Signal Process 54(11):4311–4322. https://doi.org/10.1109/TSP.2006.881199

    Article  MATH  Google Scholar 

  2. Arora M, Kumar M (2021) AutoFER: PCA and PSO based automatic facial emotion recognition. Multimed Tools Appl 80:3039–3049. https://doi.org/10.1007/s11042-020-09726-4

    Article  Google Scholar 

  3. Bansal M, Kumar M, Kumar M (2021) 2D object recognition techniques: state-of-the-art work. Arch Comp Methods Eng 28:1147–1161. https://doi.org/10.1007/s11831-020-309409-1

    Article  MathSciNet  Google Scholar 

  4. Bansal M, Kumar M, Kumar M, Kumar K (2021) An efficient technique for object recognition using Shi-Tomasi corner detection algorithm. Soft Comput 25:4423–4432. https://doi.org/10.1007/s00500-020-05453-y

    Article  Google Scholar 

  5. Chatterjee P, Milanfar P (2013) Patch-based near-optimal image denoising. IEEE Trans Image Process 21(4):1635–1649. https://doi.org/10.1109/TIP.2011.2172799

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen G, Zhu F, Heng PA (2015) An efficient statistical method for image noise level estimation. In: Proceeding of IEEE International Conference on Computer Vision, 477–485. https://doi.org/10.1109/ICCV.2015.62

  7. Chhabra P, Garg NK, Kumar M (2020) Content-based image retrieval system using ORB and SIFT features. Neural Comput Appl 32:2725–2733. https://doi.org/10.1007/s00521-018-3677-9

    Article  Google Scholar 

  8. Dabov K, Foi A, Katkovnik V, Egiazarian K (2007) Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans Image Process 16(8):2080–2095. https://doi.org/10.1109/TIP.2007.901238

    Article  MathSciNet  Google Scholar 

  9. Deledalle C, Parameswaran S, Nguyen TQ (2018) Image denoising with generalized Gaussian mixture model patch priors. SIAM J Imaging Sci 11(4):2568–2609. https://doi.org/10.1137/18M116890X

    Article  MathSciNet  MATH  Google Scholar 

  10. Dong W, Zhang L, Shi G, Li X (2013) Nonlocally centralized sparse representation for image restoration. IEEE Trans Image Process 22(4):1620–1630. https://doi.org/10.1109/TIP.2012.2235847

    Article  MathSciNet  MATH  Google Scholar 

  11. Dong W, Shi G, Ma Y, Li X (2015) Image restoration via simultaneous sparse coding: where structured sparsity meets Gaussian scale mixture. Int J Comput Vis 114:217–232. https://doi.org/10.1007/s11263-015-0808-y

    Article  MathSciNet  MATH  Google Scholar 

  12. Fedorov V, Ballester C (2017) Affine non-local means image denoising. IEEE Trans Image Process 26(5):2137–2148. https://doi.org/10.1109/TIP.2017.2681421

    Article  MathSciNet  MATH  Google Scholar 

  13. Gu S, Xie Q, Meng D, Zuo W, Feng X, Zhang L (2017) Weighted nuclear norm minimization and its applications to low level vision. Int J Comput Vis 121:183–208. https://doi.org/10.1007/s11263-016-0930-5

    Article  MATH  Google Scholar 

  14. Guan D, Xiang D, Tang X, Kuang G (2020) A SAR image despeckling method using multi-scale nonlocal low-rank model. IEEE Geosci Remote Sens Lett 17(3):421–425. https://doi.org/10.1109/LGRS.2019.2926196

    Article  Google Scholar 

  15. Guo Q, Zhang C, Zhang Y, Liu H (2016) An efficient SVD-based method for image denoising. IEEE Trans Circuits Syst Video Technol 26(5):868–880. https://doi.org/10.1109/TCSVT.2015.2416631

    Article  Google Scholar 

  16. Huo F, Zhang W, Wang Q, Ren W (2021) Two-stage image denoising algorithm based on noise localization. Multimed Tools Appl 80:14101–14122. https://doi.org/10.1007/s11042-020-10428-0

    Article  Google Scholar 

  17. Kumar A, Ahmad MO, Swamy MNS (2019) Tchebichef and adaptive steerable-based total variation model for image denoising. IEEE Trans Image Process 28(6):2921–2935. https://doi.org/10.1109/TIP.2019.2892663

    Article  MathSciNet  MATH  Google Scholar 

  18. Kumar A, Ahmad MO, Swamy MNS (2019) Image denoising via overlapping group sparsity using orthogonal moments as similarity measure. ISA Trans 85:293–304. https://doi.org/10.1016/j.isatra.2018.10.030

    Article  Google Scholar 

  19. Kumar A, Kumar M, Kaur A (2021) Face detection in still images under occlusion and non-uniform illumination. Multimed Tools Appl 80:14565–14590. https://doi.org/10.1007/s11042-020-10457-9

    Article  Google Scholar 

  20. Kumar M, Chhabra P, Garg NK (2018) An efficient content based image retrieval system using BayesNet and K-NN. Multimed Tools Appl 77:21557–21570. https://doi.org/10.1007/s11042-017-5587-8

    Article  Google Scholar 

  21. Liao X, Li K, Yin J (2017) Separable data hiding in encrypted image based on compressive sensing and discrete fourier transform. Multimed Tools Appl 76:20739–20753. https://doi.org/10.1007/s11042-016-3971-4

    Article  Google Scholar 

  22. Liao X, Guo S, Yin J, Wang H, Li X, Sangaiah AK (2018) New cubic reference table based image steganography. Multimed Tools Appl 77:10033–10050. https://doi.org/10.1007/s11042-017-4946-9

    Article  Google Scholar 

  23. Liu H, Xiong R, Liu D, Ma S, Wu F, Gao W (2018) Image denoising via low rank regularization exploiting intra and inter patch correlation. IEEE Trans Circuits Syst Video Technol 28(12):3321–3332. https://doi.org/10.1109/TCSVT.2017.2759187

    Article  Google Scholar 

  24. Luo E, Chan SH, Nguyen TQ (2016) Adaptive image denoising by mixture adaptation. IEEE Trans Image Process 25(10):4489–4503. https://doi.org/10.1109/TIP.2016.2590318

    Article  MathSciNet  MATH  Google Scholar 

  25. Martin D, Fowlkes C, Tal D, Malik J (2001) A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceeding of IEEE International Conference on Computer Vision 416–423. https://doi.org/10.1109/ICCV.2001.937655

  26. Muhammad N, Bibi N, Jahangir A, Mahmood Z (2018) Image denoising with norm weighted fusion estimators. Pattern Anal Applic 21:1013–1022. https://doi.org/10.1007/s10044-017-0617-8

    Article  MathSciNet  Google Scholar 

  27. Ou Y, Luo J, Li B, Swamy MNS (2020) Gray-level image denoising with an improved weighted sparse coding. J Vis Commun Image R:72. https://doi.org/10.1016/j.jvcir.2020.102895

  28. Papyan V, Elad M (2016) Multi-scale patch-based image restoration. IEEE Trans Image Process 25(1):249–261. https://doi.org/10.1109/TIP.2015.2499698

    Article  MathSciNet  MATH  Google Scholar 

  29. Rafsanjani HK, Sedaaghi MH, Saryazdi S (2017) An adaptive diffusion coefficient selection for image denoising. Digit Signal Process 64:71–82. https://doi.org/10.1016/j.dsp.2017.02.004

    Article  MathSciNet  MATH  Google Scholar 

  30. Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13(4):600–612. https://doi.org/10.1109/TIP.2003.819861

    Article  Google Scholar 

  31. Xie C, Zeng W, Jiang S, Lu X (2017) Multiscale self-similarity and sparse representation based single image super-resolution. Neurocomputing 260:92–103. https://doi.org/10.1016/j.neucom.2017.03.073

    Article  Google Scholar 

  32. Xu J, Zhang L, Zuo W, Zhang D, Feng X (2015) Patch group based nonlocal self-similarity prior learning for image denoising. In: Proceeding of IEEE International Conference on Computer Vision, 244–252. https://doi.org/10.1109/ICCV.2015.36

  33. Xu J, Zhang L, Zhang D (2018) External prior guided internal prior learning for real-word noisy image denoising. IEEE Trans Image Process 28(6):2996–3010. https://doi.org/10.1109/TIP.2018.2811546

    Article  MathSciNet  MATH  Google Scholar 

  34. Yair N, Michaeli T (2018) Multi-scale weighted nuclear norm image restoration. In: Proceeding of IEEE International Conference on Computer Vision and Pattern Recognition, 3165–3174. https://doi.org/10.1109/CVPR.2018.00334

  35. Yang J, Liao X (2020) An embedding strategy on fusing multiple image features for data hiding in multiple images. J Vis Commun Image R 71:102822. https://doi.org/10.1016/j.jvcir.2020.102822

    Article  Google Scholar 

  36. Zha Z, Zhang X, Wang Q, Bai Y, Chen Y, Tang L, Liu X (2018) Group sparsity residual constraint for image denoising with external nonlocal self-similarity prior. Neurocomputing 275:2294–2306. https://doi.org/10.1016/j.neucom.2017.11.004

    Article  Google Scholar 

  37. Zha Z, Yuan X, Wen B, Zhou J, Zhang J, Zhu C (2020) From rank estimation to rank approximation: rank residual constraint for image restoration. IEEE Trans Image Process 29:3254–3269. https://doi.org/10.1109/TIP.2019.2958309

    Article  MathSciNet  Google Scholar 

  38. Zhang K, Zuo W, Chen Y, Meng D, Zhang L (2017) Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising. IEEE Trans Image Process 26(7):3142–3155. https://doi.org/10.1109/TIP.2017.2662206

    Article  MathSciNet  MATH  Google Scholar 

  39. Zoran D, Weiss Y (2011) From learning models of natural image patches to whole image resstoration. In: Proceesing of IEEE International Conference on Computer Vision, 479–486. https://doi.org/10.1109/ICCV.2011.6126278

Download references

Funding

This work was supported by the China Scholarship Council (No. 202007000084).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bailin Li.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ou, Y., Zhang, B. & Li, B. Multi-scale low-rank approximation method for image denoising. Multimed Tools Appl 81, 20357–20371 (2022). https://doi.org/10.1007/s11042-022-12083-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-022-12083-z

Keywords

Navigation