Skip to main content
Log in

Two-Stage Image Denoising via an Enhanced Low-Rank Prior

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Restoring the image contaminated with heavy noise remains a challenging task. Since the image prior is essential to restoring a high-quality image, this paper proposes a novel two-stage enhanced low-rank prior model (TSLR) for efficient image denoising. Unlike denoising an image as a whole, this algorithm divides the denoising process into two stages: contour restoration and detail restoration. First, we explore the total variation (TV) regularization term to restore the image contour, obtaining the preliminary denoised image. Although TV regularization term can reduce noise, it loses the rich details of the original image. Nevertheless, detail preservation ensures good visual quality of the denoised images. Then, to overcome the above issue, the preliminary denoised image is adopted as a rough evaluation of the original image for the second stage, and the weighted sum of the \(L_1\)-norm and \(L_2\)-norm is utilized as the fidelity term. Furthermore, we introduce a new enhanced low-rank prior, which combines the low-rank prior of similar patches from both gray and gradient domains, to reconstruct the fine details of the image. To further improve the validity of image denoising on the basis of the low-rank prior, the weighted nuclear norm minimization method is adopted in the present study. In addition, this work adaptively selects the search window size for different regions to accurately select similar patches. Through extensive experiments, the results reveal that our scheme can retain more detailed information while eliminating noise and can surpass a variety of advanced non-deep methods regarding both the PSNR and SSIM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data Availibility

The datasets generated and analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Chang, S.G., Yu, B., Vetterli, M.: Adaptive wavelet thresholding for image denoising and compression. IEEE Trans. Image Process. 9(9), 1532–1546 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Starck, J.L., Candes, E.J., Donoho, D.L.: The curvelet transform for image denoising. IEEE Trans. Image Process. 11(6), 670–684 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Elad, M., Aharon, M.: Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans. Image Process. 15(12), 3736–3745 (2006)

    Article  MathSciNet  Google Scholar 

  4. Mairal, J., Bach, F., Ponce, J., et al.: Non-local sparse models for image restoration. In: International Conference on Computer Vision, Kyoto, Japan, pp. 2272–2279 (2009)

  5. Dong, W., Zhang, L., Shi, G., et al.: Nonlocally centralized sparse representation for image restoration. IEEE Trans. Image Process. 22(4), 1620–1630 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dabov, K., Foi, A., Katkovnik, V., et al.: Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans. Image Process. 16(8), 2080–2095 (2007)

    Article  MathSciNet  Google Scholar 

  7. Fan, L., Li, X., Guo, Q., et al.: Nonlocal image denoising using edge-based similarity metric and adaptive parameter selection. Sci. Chin. Inf. Sci. 61(4), 049101 (2018)

    Article  Google Scholar 

  8. Zhou, M., Chen, H., Paisley, J., et al.: Nonparametric Bayesian dictionary learning for analysis of noisy and incomplete images. IEEE Trans. Image Process. 21(1), 130–144 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1–4), 259–268 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  10. Buades, A., Coll, B., Morel, J.M.: A non-local algorithm for image denoising. In: Computer Vision and Pattern Recognition, pp. 60–65. San Diego (2005)

  11. Lebrun, M., Buades, A., Morel, J.M.: A nonlocal Bayesian image denoising algorithm. SIAM J. Imag. Sci. 6(3), 1665–1688 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gu, S., Zhang, L., Zuo, W., et al.: Weighted nuclear norm minimization with application to image denoising. In: Computer Vision and Pattern Recognition, Columbus, OH, USA, pp. 2862–2869 (2014)

  13. Xu, J., Zhang, L., Zuo, W., et al.: Patch group based nonlocal self-similarity prior learning for image denoising. In: International Conference on Computer Vision, Santiago, Chile, pp. 244–252 (2015)

  14. Gu, S., Xie, Q., Meng, D., et al.: Weighted nuclear norm minimization and its applications to low level vision. Int. J. Comput. Vis. 121(2), 183–208 (2017)

    Article  MATH  Google Scholar 

  15. Liu, H., Xiong, R., Liu, D., et al.: Image denoising via low rank regularization exploiting intra and inter patch correlation. IEEE Trans. Circuits Syst. Video Technol. 28(12), 3321–3332 (2018)

    Article  Google Scholar 

  16. Huang, Y.M., Yan, H.Y., Wen, Y.W., et al.: Rank minimization with applications to image noise removal. Inf. Sci. 429, 147–163 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  17. Chen, F., Zhang, L., Yu, H.: External patch prior guided internal clustering for image denoising. In: International Conference on Computer Vision, Santiago, Chile, pp. 603–611 (2015)

  18. Luo, E., Chan, S., Nguyen, T.: Adaptive image denoising by targeted databases. IEEE Trans. Image Process. 24(7), 2167–2181 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Zhang, K., Zuo, W., Chen, Y., et al.: Beyond a gaussian denoiser: residual learning of deep CNN for image denoising. IEEE Trans. Image Process. 26(7), 3142–3155 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kindermann, S., Osher, S., Jones, P.W.: Deblurring and denoising of images by nonlocal functionals. SIAM J. Multiscale Model. Simul. 4(4), 1091–1115 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Beck, A., Teboulle, M.: Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems. IEEE Trans. Image Process. 18(11), 2419–2434 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ren, W., Cao, X., Pan, J., et al.: Image deblurring via enhanced low-rank prior. IEEE Trans. Image Process. 25(7), 3426–3437 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  23. Fan, L., Li, X., Fan, H., et al.: An adaptive boosting procedure for low-rank based image denoising. Signal Process. 164, 110–124 (2019)

    Article  Google Scholar 

  24. Fan, L., Li, X., Fan, H., et al.: Adaptive texture-preserving denoising method using gradient histogram and nonlocal self-similarity priors. IEEE Trans. Circuits Syst. Video Technol. 29(11), 3222–3235 (2019)

    Article  Google Scholar 

  25. Liu, J., Osher, S.: Block matching local SVD operator based sparsity and TV regularization for image denoising. J. Sci. Comput. 78(1), 607–624 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  26. Tikhonov, A.N., Arsenin, V.Y.: Solutions of Ill-Posed Problems. Halsted Press, VH Winston, Washington, DC (1977)

    MATH  Google Scholar 

  27. Afonso, M.V., Bioucas-Dias, J.M., Figueiredo, M.A.T.: Fast image recovery using variable splitting and constrained optimization. IEEE Trans. Image Process. 19(9), 2345–2356 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. Choksi, R., Van Gennip, Y.: Deblurring of one dimensional bar codes via total variation energy minimization. SIAM J. Imag. Sci. 3(4), 735–764 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. Chan, R.H., Liang, H.: Truncated fractional-order total variation model for image restoration. J. Oper. Res. Soc. Chin. 7, 561–578 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  30. Li, Y., Chan, R.H., Shen, L., et al.: Regularization with multilevel non-stationary tight framelets for image restoration. Appl. Comput. Harmon. Anal. 53, 332–348 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  31. Louchet, C., Moisan, L.: Total variation as a local filter. SIAM J. Imag. Sci. 4(2), 651–694 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. Ng, M.K., Wang, W.: A total variation model for retinex. SIAM J. Imag. Sci. 4(1), 345–365 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  33. Liu, H., Xiong, R., Zhang, X., et al.: Nonlocal gradient sparsity regularization for image restoration. IEEE Trans. Circuits Syst. Video Technol. 27(9), 1909–1921 (2017)

    Article  Google Scholar 

  34. Dong, W., Shi, G., Li, X.: Nonlocal image restoration with bilateral variance estimation: a low-rank approach. IEEE Trans. Image Process. 22(2), 700–711 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  35. Zhang, J., Zhao, D., Gao, W.: Group-based sparse representation for image restoration. IEEE Trans. Image Process. 23(8), 3336–3351 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  36. Jung, M., Bresson, X., Chan, T.F., et al.: Nonlocal Mumford–Shah regularizers for color image restoration. IEEE Trans. Image Process. 20(6), 1583–1598 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  37. Dong, W., Zhang, L., Shi, G.: Centralized sparse representation for image restoration. In: International Conference on Computer Vision, Barcelona, Spain, pp. 1259–1266 (2011)

  38. Zhang, X., Burger, M., Bresson, X., et al.: Bregmanized nonlocal regularization for deconvolution and sparse reconstruction. SIAM J. Imag. Sci. 3(3), 253–276 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  39. Dong, W., Zhang, L., Shi, G., et al.: Image deblurring and super-resolution by adaptive sparse domain selection and adaptive regularization. IEEE Trans. Image Process. 20(7), 1838–1857 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  40. Yang, J., Wright, J., Huang, T.S., et al.: Image super-resolution via sparse representation. IEEE Trans. Image Process. 19(11), 2861–2873 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  41. Ji, H., Liu, C., Shen, Z., et al.: Robust video denoising using low rank matrix completion. In: Computer Vision and Pattern Recognition, San Francisco, CA, USA, pp. 1791–1798 (2010)

  42. Cai, J., Cand, E.J.S., et al.: A singular value thresholding algorithm for matrix completion. SIAM J. Optim. 20(4), 1956–1982 (2008)

    Article  MathSciNet  Google Scholar 

  43. Liu, S., Pan, J., Yang, M.H.: Learning Recursive Filters for Low-Level Vision via a Hybrid Neural Network. Springer International Publishing, Berlin (2016)

    Book  Google Scholar 

  44. Zhang, K., Zuo, W., Zhang, L.: FFDNet: toward a fast and flexible solution for CNN based image denoising. IEEE Trans. Image Process. 27(9), 4608–4622 (2018)

    Article  MathSciNet  Google Scholar 

  45. Fang, F., Li, J., Yuan, Y., et al.: Multilevel edge features guided network for image denoising. IEEE Trans. Neural Netw. Learn. Syst., Early Access (2020)

  46. Elad, M., Starck, J.L., Querre, P., et al.: Simultaneous cartoon and texture image inpainting using morphological component analysis. Appl. Comput. Harmon. Anal. 19(3), 340–358 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  47. Shi, M., Zhang, F., Wang, S., et al.: Detail preserving image denoising with patch-based structure similarity via sparse representation and SVD. Comput. Vis. Image Underst. 206, 103173 (2021)

    Article  Google Scholar 

  48. Huang, Y., Lu, D., Zeng, T.: Two-step approach for the restoration of images corrupted by multiplicative noise. SIAM J. Sci. Comput. 35(6), A2856–A2873 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  49. Sciacchitano, F., Dong, Y., Zeng, T.: Variational approach for restoring blurred images with Cauchy noise. SIAM J. Sci. Comput. 8(6), 1894–1922 (2015)

    MathSciNet  MATH  Google Scholar 

  50. Liu, J., Lou, Y., Ni, G., et al.: An image sharpening operator combined with framelet for image deblurring. Inverse Prob. 36(4), 045015 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  51. Fang, Y., Zeng, T.: Learning deep edge prior for image denoising. Comput. Vis. Image Underst. 200, 103044 (2020)

    Article  Google Scholar 

  52. Chan, R.H., Kan, K.K., Nikolova, M., et al.: A two-stage method for spectral spatial classification of hyperspectral images. J. Math. Imaging Vis. 62, 790–807 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  53. Gong, Z., Shen, Z., Toh, K.C.: Image restoration with mixed or unknown noises. SIAM J. Multiscale Model. Simul. 12(2), 458–487 (2014)

    Article  MATH  Google Scholar 

  54. Chen, S., Ge, M., Lian, Q., et al.: Robust phase retrieval algorithm based on two-step image reconstruction. Chin. J. Comput. 40(11), 2575–2588 (2017)

    MathSciNet  Google Scholar 

  55. Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imaging Vis. 20(1), 89–97 (2004)

    MathSciNet  MATH  Google Scholar 

  56. Li, X., Cui, G., Dong, Y.: Graph regularized non-negative low-rank matrix factorization for image clustering. IEEE Trans. Cybern. 47(11), 3840–3853 (2017)

    Article  MathSciNet  Google Scholar 

  57. Ji, H., Huang, S., Shen, Z., et al.: Robust video restoration by joint sparse and low rank matrix approximation. SIAM J. Imag. Sci. 4(4), 1122–1142 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  58. Candes, E.J., Li, X., Ma, Y., et al.: Robust principal component analysis? J. ACM 58(3), 1–10 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  59. Eriksson, A., Hengel, A.V.D.: Efficient computation of robust low-rank matrix approximations in the presence of missing data using the L1 norm. In: Computer Vision and Pattern Recognition, San Francisco, CA, USA, pp. 771–778 (2010)

  60. Larose, D.T.: K-nearest neighbor algorithm. In: Discovering Knowledge in Data: An Introduction to Data Mining, pp. 90–106 (2005)

  61. Nocedal, J., Wright, S.: Numerical Optimization, 2nd edn. Springer, New York (2006)

    MATH  Google Scholar 

  62. Kunisch, K., Karl: An active set strategy based on the augmented Lagrangian formulation for image restoration. ESAIM Math. Model. Numer. Anal. 33(1), 1–21 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  63. Wang, Y., Yin, W., Zhang, Y.: A fast algorithm for image deblurring with total variation regularization. CAAM Technical Reports (2007)

  64. Ma, L., Xu, L., Zeng, T.: Low rank prior and total variation regularization for image deblurring. J. Sci. Comput. 70(3), 1336–1357 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  65. Osher, S., Burger, M., Goldfarb, D., et al.: An iterative regularization method for total variation-based image restoration. Multiscale Model. Simul. 4(2), 460–489 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  66. Liu, J., Osher, S.: Structure preserving image denoising based on low-rank reconstruction and gradient histograms. Comput. Vis. Image Underst. 171, 48–60 (2018)

    Article  Google Scholar 

  67. Wang, Z., Bovik, A.C., Sheikh, H.R., et al.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Nature Science Foundation of China under Grant (Grant Nos. 62002200, 61472227, 61802229 and 62002199), the Natural Science Foundation of Shandong Province under Grant (Grant Nos. ZR2020QF012 and ZR2020QF109), the Shandong Co-Innovation Center of Future Intelligent Computing (Shandong 2011 Project).

Author information

Authors and Affiliations

Authors

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Availability of Data and Material

The data and material generated during the current study are available from the corresponding author on reasonable request.

Code Availability

Code generated or used during the study are available from the corresponding author on reasonable request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, L., Li, H., Shi, M. et al. Two-Stage Image Denoising via an Enhanced Low-Rank Prior. J Sci Comput 90, 57 (2022). https://doi.org/10.1007/s10915-021-01728-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01728-0

Keywords

Navigation