Skip to main content
Log in

An improved digital logistic map and its application in image encryption

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Chaos maps are widely used in image encryption systems due to their intrinsic advantages such as extreme sensitivity to initial values., ergodicity and pseudo-randomness. 1D Logistic map has attracted the attention of researchers due to its simple structure and easy implementation, but also because of this, the map is easy to be affected by finite precision, resulting in dynamic degradation, at low precision, the sequence generated by this map not only enters a period quickly, but also has a shorter period. Thus, taking 1D Logistic map as an example, we proposed a method to suppress the dynamic degradation of digital chaotic systems by using parameter variables and state variables to influence each other, and using sine function as feedback function to destroy the state space. The simulation results show that the improved logistic mapping with the proposed method has better randomness and higher complexity than the original logistic mapping. To prove the practicability and applicability of the improved chaotic map, we design a new image encryption algorithm, which is suitable for both color image and grayscale image. The numerical results indicate that the proposed algorithm has high encryption efficiency, good resistance to various attacks and certain competitiveness with other encryption algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30

Similar content being viewed by others

References

  1. Alawida M, Samsudin A, The JS, Alshoura WH (2019) Digital cosine chaotic map for cryptographic applications[J]. IEEE Access 7:150609–150622

    Article  Google Scholar 

  2. Arpaci B, Kurt E, Celik K, Ciylan B (2020) Colored Image Encryption and Decryption with a New Algorithm and a Hyperchaotic Electrical Circuit[J]. J Electric Eng Technol 15(3):1413–1429

    Article  Google Scholar 

  3. Bandt C, Pompe B (2002) Permutation entropy: A natural complexity measure for time series [J]. Phys Rev Lett 88(17):174102

    Article  Google Scholar 

  4. Beiazi A, El-Latif AAA, Diaconu AV, Rhouma R, Belghith S (2017) Chaos-based partial image encryption scheme based on linear fractional and lifting wavelet transforms[J]. Opt Lasers Eng 88:37–50

    Article  Google Scholar 

  5. Ben SN, Nahed A, Kais B et al (2018) An efficient nested chaotic image encryption algorithm based on DNA sequence[J]. Int J Mod Physics C 29:7

    Google Scholar 

  6. Benitez R, Bolos VJ, Ramirez ME (2010) A wavelet-based tool for studying non-periodicity. Comput Math Appl 60(3):643–641

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen C, Kehui S, Shaobo H (2020) An improved image encryption algorithm with finite computing precision[J]. Signal Process 168:107340

    Article  Google Scholar 

  8. ChengQing L, DongDong L, BingBing F, etc. Cryptanalysis of a chaotic image encryption algorithm based on information entropy[J]. IEEE Access, 2018, 6: 75834–75842.

  9. Flores-Vergara A, Inzunza-González E, García-Guerrero E et al (2019) Implementing a Chaotic Cryptosystem by Performing Parallel Computing on Embedded Systems with Multiprocessors[J]. Entropy 21(3):268

    Article  MathSciNet  Google Scholar 

  10. Fuh CC, Wang MC (2011) A Combined Input-state Feedback Linearization Scheme and Independent Component Analysis Filter for the Control of Chaotic Systems with Significant Measurement Noise [J]. J Vib Control 17(2):215–221

    Article  MATH  Google Scholar 

  11. Khedmati Y, Parvaz R, Behroo Y (2020) 2D Hybrid chaos map for image security transform based on framelet and cellular automata[J]. Inf Sci 512:855–879

    Article  MathSciNet  Google Scholar 

  12. Khlebodarova TM, Kogai VV, Fadeev SI, Likhosvai VA (2017) Chaos and hyperchaos in simple gene network with negative feedback and time delays [J]. J Bioinforma Comput Biol 15(2):1650042

    Article  Google Scholar 

  13. Li CQ, Feng BB, Li SJ, Kurths J, Chen GR (2019) Dynamic Analysis of Digital Chaotic Maps via State-Mapping Networks. IEEE Transact Circ Syst I-Regular Papers 66(6):2322–2335

    Article  MathSciNet  Google Scholar 

  14. Liu L, Miao S (2017) Delay-introducing method to improve the dynamical degradation of a digital chaotic map[J]. Inf Sci 396:1–13

    Article  Google Scholar 

  15. Liu L, Lin J, Miao S et al (2017) A Double Perturbation Method for Reducing Dynamical Degradation of the Digital Baker Map [J]. Int J Bifurcat Chaos 27(7):1750103

    Article  MathSciNet  MATH  Google Scholar 

  16. Liu Y, Luo Y, Song S et al (2017) Counteracting Dynamical Degradation of Digital Chaotic Chebyshev Map via Perturbation[J]. Int J Bifurcat Chaos 27(3):1750033

    Article  MathSciNet  MATH  Google Scholar 

  17. Liu LF, Liu BC, Hu HP et al (2018) Reducing the Dynamical Degradation by Bi-Coupling Digital Chaotic Maps[J]. Int J Bifurcat Chaos 28(05):1850059

    Article  MathSciNet  MATH  Google Scholar 

  18. LvChen C, YuLin L, SenHui Q, JunXiu L (2015) A perturbation method to the tent map based on Lyapunov exponent and its application[J]. Chinese Physics B 24(10):82–89

    Google Scholar 

  19. Mollaeefar M, Sharif A, Nazari M (2017) A novel encryption scheme for colored image based on high level chaotic maps[J]. Multimed Tools Appl 76(1):607–629

    Article  Google Scholar 

  20. Mondal B, Singh S, Kumar P (2019) A secure image encryption scheme based on cellular automata and chaotic skew tent map[J]. J Info Sec Appl 45:117–130

    Google Scholar 

  21. Nagaraj N, Shastry MC, Vaidya PG (2008) Increasing average period lengths by switching of robust chaos maps in finite precision[J]. Eur Physical J Spec Top 165(1):73–83

    Article  Google Scholar 

  22. Nestor T, De Dieu NJ, Jacques K, Yves EJ et al (2020) A multidimensional Hyperjerk oscillator: dynamics analysis, analogue and embedded systems implementation, and its application as a cryptosystem[J]. Sensors 20(1)

  23. Niyat AY, Moattar MH (2019) Color image encryption based on hybrid chaotic system and DNA sequences[J]. Multimed Tools Appl 79(1–2):1497–1518

    Google Scholar 

  24. Niyat AY, Moattar MH, Torshiz MN (2017) Color image encryption based on hybrid hyper-chaotic system and cellular automata[J]. Opt Lasers Eng 90:225–237

    Article  Google Scholar 

  25. Parvaz R, Zarebnia M (2018) A combination chaotic system and application in color image encryption[J]. Opt Laser Technol 101:30–41

    Article  Google Scholar 

  26. Pincus S (1995) Approximate entropy (apen) as a complexity measure [J]. Chaos 5(1):110–117

    Article  MathSciNet  Google Scholar 

  27. Qi Y, ChunHua W (2018) A New Chaotic Image Encryption Scheme Using Breadth-First Search and Dynamic Diffusion [J]. Int J Bifurcat Chaos 28(4):1850047

    Article  MathSciNet  MATH  Google Scholar 

  28. Rajagopalan S, Poori S, Narasimhan M, Rethinam S et al (2020) Chua's diode and strange attractor: a three-layer hardware–software co-design for medical image confidentiality[J]. IET Image Process 14(7):1354–1365

    Article  Google Scholar 

  29. Ravichandran D, Praveenkumar P, Rayappan JBB, Amirtharajan R (2017) DNA Chaos Blend to Secure Medical Privacy[J]. IEEE Transact Nanobiosci 16(8):850–858

    Article  Google Scholar 

  30. Sivaraman R, Sundararaman R, Rayappan JBB, Amirtharajan R (2020) Ring Oscillator as Confusion – Diffusion Agent: A Complete TRNG Drove Image Security[J]. IET Image Process. https://doi.org/10.1049/iet-ipr.2019.0168

  31. Tsafack N, Kengne J, Abd-El-Atty B et al (2020) Design and implementation of a simple dynamical 4-D chaotic circuit with applications in image encryption[J]. 515:191–217

  32. Wei Z, ZhiLiang Z, Hai Y (2019) A Symmetric Image Encryption Algorithm Based on a Coupled Logistic-Bernoulli Map and Cellular Automata Diffusion Strategy[J]. Entropy 21(5):504

    Article  MathSciNet  Google Scholar 

  33. Wenhao L, Kehui S, He Y, Yu M (2017) Color Image Encryption Using Three-Dimensional Sine ICMIC Modulation Map and DNA Sequence Operations[J]. Int J Bifurcat Chaos 27:11

    Google Scholar 

  34. Wheeler DD, Matthews RAJ (1991) Supercomputer investigations of a chaotic encryption algorithm[J]. Cryptologia 15(2):140–152

    Article  Google Scholar 

  35. Wu Y, Noonan J, Agaian S (2011) Npcr and uaci randomness tests for image encryption[J]. Cyper J(JSAT) 90:146–154

    Google Scholar 

  36. XiangJun W, KunShu W, Xingyuan W et al (2018) Color image DNA encryption using NCA map-based CML and one-time keys. Signal Process 148:272–287

    Article  Google Scholar 

  37. XianYe L, XiangFeng M, Xiulun Y, Yurong W et al (2018) Multiple-image encryption via lifting wavelet transform and XOR operation based on compressive ghost imaging scheme[J]. 102:106–111

  38. XiaoJun T, Miao Z, Zhu W, Yang L (2014) A image encryption scheme based on dynamical perturbation and linear feedback shift register [J]. Nonlinear Dynamics 78(3):2277–2291

    Article  Google Scholar 

  39. XingYuan W, Siwei W, Na W, YingQian Z (2019) A Novel Chaotic Image Encryption Scheme Based on Hash Function and Cyclic Shift [J]. IETE Tech Rev 36(1):39–48

    Article  Google Scholar 

  40. Zhou Y, Hua Z, Pun CM et al (2015) Cascade Chaotic System with Applications[J]. IEEE Transact Cybernet 45(9):2001–2012

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (61862042).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingfeng Liu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, H., Liu, L. An improved digital logistic map and its application in image encryption. Multimed Tools Appl 79, 30329–30355 (2020). https://doi.org/10.1007/s11042-020-09595-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-020-09595-x

Keywords

Navigation