Skip to main content
Log in

Fast computation of 3D Meixner’s invariant moments using 3D image cuboid representation for 3D image classification

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

In this paper, we propose a new fast computation method of 3D discrete orthogonal invariant moments of Meixner. This proposed method is based on two fundamental notions: the first is the extraction of the invariants of the 3D Meixner moments from the invariant of 3D geometric moments. The second is the use of 3D image cuboid representation (ICR). In this representation, the invariant moments of Meixner will be extracted from the cuboids instead of the overall image which allows reducing considerably the invariant computation time of 3D Meixner moments and consequently reducing the time of 3D image classification as well. In fact, the proposed method is tested by using several well-known computer vision data sets, including the moment invariability and the 3D image classification. Hence, the results obtained show the moments’ invariance extracted by the method proposed under the three different affine transformations: translation, scale and rotation of the 3D images, and clearly guarantee the efficiency of the proposed method in terms of calculation time and classification accuracy compared to existing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Abu-Mostafa YS, Psaltis D (1985) Image normalization by complex moments. IEEE Transactions on Pattern Analysis & Machine Intelligence 7(1):46–55

    Article  Google Scholar 

  2. I Batioua, R Benouini, K Zenkouar, A Zahi and H. El Fadili. 3D image analysis by separable discrete orthogonal moments based on Krawtchouk and Tchebichef polynomials. Pattern Recogn, 2017, vol. 71, p. 264–277.

  3. Chong C-W, Raveendran P, Mukundan R (2003) Translation invariants of Zernike moments. Pattern Recogn 36:1765–1773

    Article  MATH  Google Scholar 

  4. Chong C-W, Raveendran P, Mukundan R (2004) Translation & scale invariants of Legendre moments. Pattern Recogn 37:119–129

    Article  MATH  Google Scholar 

  5. Comtet L (2012) Advanced combinatorics: the art of finite and infinite expansions, Springer Science & Business Media

  6. Flusser J, Suk T, Zitova B (2009) Moments and moment invariants in pattern recognition. Wiley

  7. Flusser J, Suk T, Zitova B (2016) 2D and 3D image analysis by moments. John Wiley & Sons

  8. Galvez JM, Canton M (1993) Normalization and shape recognition of three-dimensional objects by 3D moments. Pattern Recogn 26(5):667–681

    Article  Google Scholar 

  9. Hickman MS (2012) Geometric moments and their invariants. Journal of Mathematical Imaging and Vision 44(3):223–235

    Article  MathSciNet  MATH  Google Scholar 

  10. Hmimid A, Sayyouri M, Qjidaa H (2015) Fast computation of separable two-dimensional discrete invariant moments for image classification. Pattern Recogn 48:509–521

    Article  MATH  Google Scholar 

  11. Hosny KM (2011) Fast and low-complexity method for exact computation of 3D Legendre moments. Pattern Recogn Lett 32(9):1305–1314

    Article  Google Scholar 

  12. Hosny KM (2011) Image representation using accurate orthogonal Gegenbauer moments. Pattern Recogn Lett 32(6):795–804

    Article  Google Scholar 

  13. Hosny KM (2012) Fast computation of accurate Gaussian-Hermite moments for image processing applications. Digital Signal Processing 22(3):476–485

    Article  MathSciNet  Google Scholar 

  14. Hu MK (1962) Visual pattern recognition by moment invariants. Inf Theory IRE Trans On 8:179–187

    MATH  Google Scholar 

  15. Idan ZN, Abdulhussain SH, Al-Haddad SAR (2020) A new separable moment based on Tchebichef-Krawtchouk polynomials. IEEE Access 8:41013–41025

    Article  Google Scholar 

  16. T. Jahid, H. Karmouni, M. Sayyouri, A. Hmimid and Qjidaa H (2018) Fast algorithm of 3D discrete image orthogonal moments computation based on 3D cuboid. Journal of Mathematical Imaging and Vision, p. 1–21.

  17. Karakasis EG, Papakostas GA, Koulouriotis DE, Tourassis VD (2013) Generalized dual Hahn moment invariants. Pattern Recogn 46(7):1998–2014

    Article  MATH  Google Scholar 

  18. H. Karmouni, T. Jahid, M. Sayyouri, A. Hmimid and H. Qjidaa (2019) Fast reconstruction of 3D images using charlier discrete orthogonal moments. Circuits, Systems, and Signal Processing, p. 1–28.

  19. H. Karmouni, T. Jahid, M. Sayyouri, R. El Alami and Qjidaa H (2019) Fast 3D image reconstruction by cuboids and 3D Charlier’s moments. J Real-Time Image Proc, p. 1–17.

  20. S. Liao, A. Chiang, Q. Lu, M. Pawlak, Chinese character recognition via Gegenbauer moments, in: Pattern Recognit. 2002 Proc. 16th Int. Conf. On, IEEE, 2002: pp. 485–488.

  21. Liao X, Li K, Yin J (2017) Separable data hiding in encrypted image based on compressive sensing and discrete fourier transform. Multimed Tools Appl 76(20):20739–20753

    Article  Google Scholar 

  22. Liao X, Qin Z, Ding L (2017) Data embedding in digital images using critical functions. Signal Process Image Commun 58:146–156

    Article  Google Scholar 

  23. Lo CH, Don HS (1989) 3D moment forms: their construction and application to object identification and positioning. IEEE Trans Pattern Anal Mach Intell 11(10):1053–1064

    Article  Google Scholar 

  24. Nikiforov AF, Suslov SK, Uvarov B (1991) Classical orthogonal polynomials of a discrete variable. Springer, New York

    Book  MATH  Google Scholar 

  25. Papakostas GA, Karakasis EG, Koulouriotis DE (2010) Novel moment invariants for improved classification performance in computer vision applications. Pattern Recogn 43(1):58–68

    Article  MATH  Google Scholar 

  26. Reddi SS (1981) Radial & angular moment invariants for image identification. IEEE Transactions on Pattern Analysis & Machine Intelligence 3(2):240–242

    Article  Google Scholar 

  27. Reiss TH (1991) The revised fundamental theorem of moment invariants. IEEE Transactions on Pattern Analysis & Machine Intelligence 13(8):830–834

    Article  Google Scholar 

  28. Sadjadi FA, Hall EL (1980) Three-dimensional moment invariants. IEEE Transactions on Pattern Analysis & Machine Intelligence PAMI 2(2):127–136

    Article  MATH  Google Scholar 

  29. Sheng Y, Shen L (1994) Orthogonal Fourier-Mellin moments for invariant pattern recognition. JOSA A 11:1748–1757

    Article  Google Scholar 

  30. Siddiqi K, Zhang J, Macrini D, Shokoufandeh A, Bouix S, Dickinson S (2008) Retrieving articulated 3-D models using medial surfaces. Mach Vis Appl 19:261–275

    Article  MATH  Google Scholar 

  31. Śmieja M, Struski Ł, Tabor J, Marzec M (2019) Generalized RBF kernel for incomplete data. Knowl-Based Syst 173:150–162

    Article  Google Scholar 

  32. Suk T, Flusser J, Boldyš J (2015) 3D rotation invariants by complex moments. Pattern Recogn 48(11):3516–3526

    Article  MATH  Google Scholar 

  33. Teague MR (1980) Image analysis via the general theory of moments. JOSA. 70:920–930

    Article  MathSciNet  Google Scholar 

  34. Upneja R, Singh C (2015) Fast computation of Jacobi-Fourier moments for invariant image recognition. Pattern Recogn 48(5):1836–1843

    Article  MATH  Google Scholar 

  35. Wu H, Coatrieux JL, Shu H (2013) New algorithm for constructing and computing scale invariants of 3D Tchebichef moments. Math Probl Eng 2013

  36. Xia T, Zhu H, Shu H, Haigron P, Luo L (2007) Image description with generalized pseudo-Zernike moments. JOSA A. 24:50–59

    Article  Google Scholar 

  37. Yang B, Dai M (2011) Image analysis by Gaussian–Hermite moments. Signal Process 91:2290–2303

    Article  MATH  Google Scholar 

  38. Yang B, Flusser J, Suk T (2015) 3D rotation invariants of Gaussian–Hermite moments. Pattern Recogn Lett 54(1):18–26

    Article  Google Scholar 

  39. Zhang L, Xiao WW, Ji Z (2007) Local affine transform invariant image watermarking by Krawtchouk moment invariants. IET Inf Secur 1(3):97–105

    Article  Google Scholar 

  40. Zhang H, Shu H, Han G-N, Coatrieux G, Luo L, Coatrieux JL (2010) Blurred image recognition by Legendre moment invariants. IEEE Trans Image Process 19(3):596–611

    Article  MathSciNet  MATH  Google Scholar 

  41. Zhi R, Cao L, Cao G (2018) Translation and scale invariants of Krawtchouk moments. Inf Process Lett 130:30–35

    Article  MathSciNet  MATH  Google Scholar 

  42. J. Zhou, Z. Jiang, F.L. Chung and S. Wang (2020) Formulating ensemble learning of SVMs Into a single SVM formulation by negative agreement learning. IEEE Transactions on Systems, Man, and Cybernetics: Systems

  43. Zhu H, Shu H, Xia T, Luo L, Coatrieux JL (2007) Translation & scale invariants of Tchebichef moments. Pattern Recogn 40:2530–2542

    Article  MATH  Google Scholar 

  44. Zhu H, Liu M, Ji H, Li Y (2010) Combined invariants to blur and rotation using Zernike moment descriptors. Pattern Anal Applic 3(13):309–319

    Article  MathSciNet  Google Scholar 

  45. Zhu H, Liu M, Shu H, Zhang H, Luo L (2010) General form for obtaining discrete orthogonal moments. IET Image Process 4(5):335–352

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors of this article would like to thank all the contributors to this work and all the reviewers who have examined this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Karmouni.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karmouni, H., Yamni, M., El ogri, O. et al. Fast computation of 3D Meixner’s invariant moments using 3D image cuboid representation for 3D image classification. Multimed Tools Appl 79, 29121–29144 (2020). https://doi.org/10.1007/s11042-020-09351-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-020-09351-1

Keywords

Navigation