Skip to main content
Log in

Fast Computation of 3D Discrete Invariant Moments Based on 3D Cuboid for 3D Image Classification

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

The use of 3D discrete orthogonal invariant moments as descriptors of images constitutes one of the hot topics in the field of 3D image analysis, especially in the recognition and classification of deformed objects, due to their high numerical precision and low computing complexity. The TSR (translation, scale and rotation) invariant functions of discrete orthogonal moments can be obtained by expressing them as a linear combination of the corresponding invariant of geometric moments. This classical method is very expensive in time due to the long time allocated to compute the polynomial coefficients when complex or large 3D images are used. This main drawback eliminates the use of these moments in the recognition and classification fields of 3D objects. In this article, we propose a fast and efficient method for calculating 3D discrete orthogonal invariant moments of Hahn, Tchebichef, Krawtchouk, Meixner and Charlier of 3D image. This proposed method is based on the extraction of the 3D discrete orthogonal invariant moments from the 3D geometric invariant moments of the entire 3D image, using the 3D image cuboid representation (ICR) strategy, where each cuboid is treated independently. The proposed method has the advantage of accelerating the process of extracting the 3D discrete invariant moments compared with the classical method. The performance of the proposed method is evaluated in terms of the calculation time and classification accuracy using a set of 3D images. Instead of some examples of using the discrete orthogonal invariant moments of Hahn, Tchebichef, Krawtchouk, Meixner and Charlier as pattern features for pattern classification are also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Availability of Data and Materials

The datasets generated in our experiments are available from McGill 3D Shape Benchmark images database, URL link: http://www.cim.mcgill.ca/~shape/benchMark/airplane.html. (2017). Accessed 12 February 2020. The datasets used or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Y.S. Abu-Mostafa, D. Psaltis, Image normalization by complex moments. IEEE Trans. Pattern Anal. Mach. Intell. 7(1), 46–55 (1985)

    Article  Google Scholar 

  2. I. Batioua, R. Benouini, K. Zenkouar, A. Zahi, 3D image analysis by separable discrete orthogonal moments based on Krawtchouk and Tchebichef polynomials. Pattern Recogn. 71, 264–277 (2017)

    Article  Google Scholar 

  3. C.-W. Chong, P. Raveendran, R. Mukundan, Translation invariants of Zernike moments. Pattern Recogn. 36, 1765–1773 (2003)

    Article  MATH  Google Scholar 

  4. C.-W. Chong, P. Raveendran, R. Mukundan, Translation & scale invariants of Legendre moments. Pattern Recogn. 37, 119–129 (2004)

    Article  MATH  Google Scholar 

  5. L. Comtet, Advanced Combinatorics: The Art of Finite and Infinite Expansions (Springer, Netherlands, 2012).

    Google Scholar 

  6. J. Flusser, T. Suk, Pattern recognition by affine moment invariants. Pattern Recognit 26, 167–174 (1993)

    Article  MathSciNet  Google Scholar 

  7. J. Flusser, T. Suk, B. Zitova, 2D and 3D Image Analysis by Moments (Wiley, Hoboken, 2016).

    Book  MATH  Google Scholar 

  8. A. Hmimid, M. Sayyouri, H. Qjidaa, Image classification using novel set of Charlier moment invariants. WSEAS Trans. Signal Process. 10(1), 156–167 (2014)

    Google Scholar 

  9. A. Hmimid, M. Sayyouri, H. Qjidaa, Fast computation of separable two-dimensional discrete invariant moments for image classification. Pattern Recognit. 48, 509–521 (2015)

    Article  MATH  Google Scholar 

  10. K.M. Hosny, Fast and low-complexity method for exact computation of 3D Legendre moments. Pattern Recogn. Lett. 32(9), 1305–1314 (2011)

    Article  Google Scholar 

  11. K.M. Hosny, Image representation using accurate orthogonal Gegenbauer moments. Pattern Recogn. Lett. 32(6), 795–804 (2011)

    Article  Google Scholar 

  12. K.M. Hosny, Fast computation of accurate Gaussian–Hermite moments for image processing applications. Digit. Signal Process. 22(3), 476–485 (2012)

    Article  MathSciNet  Google Scholar 

  13. M.-K. Hu, Visual pattern recognition by moment invariants. IRE Trans. Inf. Theory 8, 179–187 (1962)

    Article  MATH  Google Scholar 

  14. http://www.chu-fes.ma/.

  15. http://www.cim.mcgill.ca/~shape/benchMark/airplane.html. (2017). Accessed 31 July 2017.

  16. T. Jahid, H. Karmouni, M. Sayyouri et al., Fast algorithm of 3D discrete image orthogonal moments computation based on 3D cuboid. J. Math. Imaging Vis. 61, 1–21 (2018)

    MathSciNet  MATH  Google Scholar 

  17. E.G. Karakasis, G.A. Papakostas, D.E. Koulouriotis, V.D. Tourassis, Generalized Dual Hahn Moment Invariants. Pattern Recogn. 46(7), 1998–2014 (2013)

    Article  MATH  Google Scholar 

  18. H. Karmouni, T. Jahid, M. Sayyouri, R. El Alami, H. Qjidaa, Fast 3D image reconstruction by cuboids and 3D Charlier’s moments. J. Real-Time Image Process. 17, 1–17 (2019)

    MATH  Google Scholar 

  19. H. Karmouni, T. Jahid, M. Sayyouri, A. Hmimid, H. Qjidaa, Fast reconstruction of 3D images using Charlier discrete orthogonal moments. Circuits Syst. Signal Process. 38, 1–28 (2019)

    Article  MATH  Google Scholar 

  20. R. Koekoek, P.A. Lesky, R.F. Swarttouw, Hypergeometric Orthogonal Polynomials and Their Q-Analogues (Springer, Berlin, 2010).

    Book  MATH  Google Scholar 

  21. S. Liao, A. Chiang, Q. Lu, M. Pawlak, Chinese character recognition via Gegenbauer moments, in Proceeding of the 16th International Conference on Pattern Recognition, IEEE, 2002, pp. 485–488, 2002.

  22. M.K. Mandal, T. Aboulnasr, S. Panchanathan, Image indexing using moments and wavelets. IEEE Trans. Consum. Electron. 42(3), 557–565 (1996)

    Article  Google Scholar 

  23. R. Mukundan, S.H. Ong, P.A. Lee, Image analysis by Tchebichef moments. IEEE Trans. Image Process. 10(9), 1357–1364 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  24. A.F. Nikiforov, S.K. Suslov, B. Uvarov, Classical Orthogonal Polynomials of a Discrete Variable (Springer, New York, 1991).

    Book  MATH  Google Scholar 

  25. H. Rahmalan, N.A. Abu, S.L. Wong, Using Tchebichef moment for fast and efficient image compression. Pattern Recognit. Image Anal. 20, 505–512 (2010)

    Article  Google Scholar 

  26. S.S. Reddi, Radial & angular moment invariants for image identification. IEEE Trans. Pattern Anal. Mach. Intell. 3(2), 240–242 (1981)

    Article  Google Scholar 

  27. T.H. Reiss, The revised fundamental theorem of moment invariants. IEEE Trans. Pattern Anal. Mach. Intell. 13(8), 830–834 (1991)

    Article  Google Scholar 

  28. M. Sayyouri, A. Hmimid, H. Qjidaa, Improving the performance of image classification by Hahn moment invariants. JOSA A 30(11), 2381–2394 (2013)

    Article  Google Scholar 

  29. M. Sayyouri, A. Hmimid, H. Qjidaa, A fast computation of novel set of Meixner invariant moments for image analysis. Circuits Syst. Signal Process. 34(3), 875–900 (2015)

    Article  MATH  Google Scholar 

  30. M. Sayyouri, A. Hmimid, H. Qjidaa, Image analysis using separable discrete moments of Charlier–Hahn. Multimed. Tools Appl. 75(1), 547–571 (2016)

    Article  MATH  Google Scholar 

  31. Y. Sheng, L. Shen, Orthogonal Fourier–Mellin moments for invariant pattern recognition. JOSA A 11, 1748–1757 (1994)

    Article  Google Scholar 

  32. K. Siddiqi, J. Zhang, D. Macrini, A. Shokoufandeh, S. Bouix, S. Dickinson, Retrieving articulated 3-D models using medial surfaces. Mach. Vis. Appl. 19, 261–275 (2008)

    Article  MATH  Google Scholar 

  33. M.R. Teague, Image analysis via the general theory of moments. JOSA 70, 920–930 (1980)

    Article  MathSciNet  Google Scholar 

  34. E.D. Tsougenis, G.A. Papakostas, D.E. Koulouriotis, Image watermarking via separable moments. Multimed. Tools Appl. 74, 3985–4012 (2015)

    Article  Google Scholar 

  35. R. Upneja, C. Singh, Fast computation of Jacobi–Fourier moments for invariant image recognition. Pattern Recogn. 48(5), 1836–1843 (2015)

    Article  MATH  Google Scholar 

  36. H. Wu, J.L. Coatrieux, H. Shu, New Algorithm for Constructing and Computing Scale Invariants of 3D Tchebichef Moments (Math. Probl, Eng, 2013).

    Book  Google Scholar 

  37. T. Xia, H. Zhu, H. Shu, P. Haigron, L. Luo, Image description with generalized pseudo-Zernike moments. JOSA A 24, 50–59 (2007)

    Article  Google Scholar 

  38. B. Yang, M. Dai, Image analysis by Gaussian–Hermite moments. Signal Process. 91, 2290–2303 (2011)

    Article  MATH  Google Scholar 

  39. B. Yang, J. Flusser, T. Suk, 3D rotation invariants of Gaussian–Hermite moments. Pattern Recogn. Lett. 54(1), 18–26 (2015)

    Article  Google Scholar 

  40. P.-T. Yap, P. Raveendran, S.-H. Ong, Krawtchouk moments as a new set of discrete orthogonal moments for image reconstruction, in Proceedings of the 2002 International Joint Conference on Neural Networks IJCNN ’02 (2002) vol 1, p. 5.

  41. P.-T. Yap, R. Paramesran, S.-H. Ong, Image analysis by Krawtchouk moments. IEEE Trans. Image Process. 12(11), 1367–1377 (2003)

    Article  MathSciNet  Google Scholar 

  42. P.T. Yap, P. Raveendran, S.H. Ong, Image analysis using Hahn moments. IEEE Trans. Pattern Anal. Mach. Intell. 29, 2057–2062 (2007)

    Article  Google Scholar 

  43. L. Zhang, W.W. Xiao, Z. Ji, Local affine transform invariant image watermarking by Krawtchouk moment invariants. IET Inf. Secur. 1(3), 97–105 (2007)

    Article  Google Scholar 

  44. H. Zhang, H. Shu, G.-N. Han, G. Coatrieux, L. Luo, J.L. Coatrieux, Blurred image recognition by Legendre moment invariants. IEEE Trans. Image Process. 19(3), 596–611 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  45. R. Zhi, L. Cao, G. Cao et al., Translation and scale invariants of Krawtchouk moments. Inf. Process. Lett. 130, 30–35 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  46. H. Zhu, H. Shu, T. Xia, L. Luo, J.L. Coatrieux, Translation & scale invariants of Tchebichef moments. Pattern Recogn. 40, 2530–2542 (2007)

    Article  MATH  Google Scholar 

  47. H. Zhu, M. Liu, H. Ji, Y. Li, Combined invariants to blur and rotation using Zernike moment descriptors. Pattern Anal. Appl. 3(13), 309–319 (2010)

    Article  MathSciNet  Google Scholar 

  48. H. Zhu, Image representation using separable two-dimensional continuous and discrete orthogonal moments. Pattern Recogn. 45, 1540–1558 (2012)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referees for their valuable comments and suggestions.

Funding

No funding has been granted for this work.

Author information

Authors and Affiliations

Authors

Contributions

Category 1 H. Karmouni, M. Yamni and O. El Ogri contributed to the conception and design of study. H. Karmouni, M. Yamni, O. El ogri, Mhamed Sayyouri and Hassan Qjidaa contributed to the acquisition of data. H. Karmouni, M. Sayyouri, H. Qjidaa, A. Tahiri, M. Maaroufi and B. Alami contributed to the analysis and/or interpretation of data. Category 2 H. Karmouni, M. Yamni and A. Daoui contributed to the drafling the manuscript. H. Karmouni, M. Sayyouri, H. Qjidaa, A. Tahiri and M. Maaroufi contributed to revising the manuscript critically for important intellectual content. Category 3 H. Karmouni, M. Yamni, O. El Ogri, A. Daoui, M. Sayyouri, H. Qjidaa, A. Tahiri, M. Maaroufi and B. Alami contributed to the approval of version of the manuscript to be published.

Corresponding author

Correspondence to Hicham Karmouni.

Ethics declarations

Conflict of interest

The authors declare that we have no competing interests in the submission of this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karmouni, H., Yamni, M., El Ogri, O. et al. Fast Computation of 3D Discrete Invariant Moments Based on 3D Cuboid for 3D Image Classification. Circuits Syst Signal Process 40, 3782–3812 (2021). https://doi.org/10.1007/s00034-020-01646-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-020-01646-w

Keywords

Navigation