Skip to main content
Log in

Windowed and distortion-compensated vector modulation for blind audio watermarking in DWT domain

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

A windowed vector modulation (WVM) scheme incorporable with distortion compensation is proposed to enhance the imperceptibility and robustness of blind audio watermarking in the norm space of discrete wavelet transform (DWT) domain. The merits of WVM are demonstrated through performance comparison among three DWT-based watermarking methods that adaptively modulate the vectors collected from the approximation subband after 2-level DWT decomposition of audio signals. The incorporation of window weighting into modulation formulation can smooth the transitions across adjacent vectors, while the employment of distortion compensation allows the WVM to be executable using larger quantization steps without introducing additional distortion. Experiment results confirm that the perceptual quality is noticeably improved through the windowing process, and the bit error rates of retrieved watermarks are manifestly reduced after integrating WVM with distortion compensation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bassia P, Pitas I, Nikolaidis N (2001) Robust audio watermarking in the time domain. IEEE Trans Multimedia 3(2):232–241

    Article  Google Scholar 

  2. Bhat KV, Sengupta I, Das A (2010) An adaptive audio watermarking based on the singular value decomposition in the wavelet domain. Digital Signal Processing 20(6):1547–1558

    Article  Google Scholar 

  3. Bhat KV, Sengupta I, Das A (2011) An audio watermarking scheme using singular value decomposition and dither-modulation quantization. Multimed Tools Appl 52(2–3):369–383

    Article  Google Scholar 

  4. Chen B, Wornell GW (2001) Quantization index modulation: a class of provably good methods for digital watermarking and information embedding. IEEE Trans Information Theory 47(4):1423–1443

    Article  MathSciNet  MATH  Google Scholar 

  5. Daubechies I (1992) Ten lectures on wavelets. CBMS-NSF regional conference series in applied mathematics, vol 61. Society for Industrial and Applied Mathematics, Philadelphia, Pa

  6. He X (2008) Watermarking in audio : key techniques and technologies. Cambria Press, Youngstown

    Google Scholar 

  7. Hu H-T, Chen W-H (2012) A dual cepstrum-based watermarking scheme with self-synchronization. Signal Process 92(4):1109–1116

    Article  Google Scholar 

  8. Hu H-T, Hsu L-Y (2015) Robust, transparent and high-capacity audio watermarking in DCT domain. Signal Process 109:226–235

    Article  Google Scholar 

  9. Hu H-T, Hsu L-Y (2016) A DWT-based rational dither modulation scheme for effective blind audio watermarking. Circuits Syst Signal Process 35(2):553–572

    Article  Google Scholar 

  10. Hu H-T, Chou H-H, Yu C, Hsu L-Y (2014a) Incorporation of perceptually adaptive QIM with singular value decomposition for blind audio watermarking. EURASIP J Adv Signal Process 2014(1):1–12

    Article  Google Scholar 

  11. Hu H-T, Hsu L-Y, Chou H-H (2014b) Variable-dimensional vector modulation for perceptual-based DWT blind audio watermarking with adjustable payload capacity. Digital Signal Processing 31:115–123

    Article  Google Scholar 

  12. Kabal P (2002) An examination and interpretation of ITU-R BS.1387: Perceptual evaluation of audio quality. TSP Lab Technical Report, Dept Electrical & Computer Engineering, McGill University

  13. Katzenbeisser S, Petitcolas FAP (2000) Information hiding techniques for steganography and digital watermarking / Stefan Katzenbeisser. In: Petitcolas FAP (ed) Artech House computer security series. Artech House, Boston

    Google Scholar 

  14. Lei BY, Soon IY, Li Z (2011) Blind and robust audio watermarking scheme based on SVD–DCT. Signal Process 91(8):1973–1984

    Article  MATH  Google Scholar 

  15. Lei B, Soon IY, Zhou F, Li Z, Lei H (2012) A robust audio watermarking scheme based on lifting wavelet transform and singular value decomposition. Signal Process 92(9):1985–2001

    Article  Google Scholar 

  16. Li X, Yu HH (2000) Transparent and robust audio data hiding in cepstrum domain. In: IEEE Int. Conf. Multimedia and Expo, New York, NY, USA, pp. 397–400

    Google Scholar 

  17. Li W, Xue X, Lu P (2006) Localized audio watermarking technique robust against time-scale modification. IEEE Trans Multimedia 8(1):60–69

    Article  Google Scholar 

  18. Lie W-N, Chang L-C (2006) Robust and high-quality time-domain audio watermarking based on low-frequency amplitude modification. IEEE Trans Multimedia 8(1):46–59

    Article  Google Scholar 

  19. Liu SC, Lin SD (2006) BCH code-based robust audio watermarking in cepstrum domain. J Inf Sci Eng 22(3):535–543

    MathSciNet  Google Scholar 

  20. Megías D, Serra-Ruiz J, Fallahpour M (2010) Efficient self-synchronised blind audio watermarking system based on time domain and FFT amplitude modification. Signal Process 90(12):3078–3092

    Article  MATH  Google Scholar 

  21. Moulin P, Koetter R (2005) Data-Hiding Codes. Proc IEEE 93(12):2083–2126

  22. Tachibana R, Shimizu S, Kobayashi S, Nakamura T (2002) An audio watermarking method using a two-dimensional pseudo-random array. Signal Process 82(10):1455–1469

    Article  MATH  Google Scholar 

  23. Wang X-Y, Zhao H (2006) A novel synchronization invariant audio watermarking scheme based on DWT and DCT. IEEE Trans Signal Processing 54(12):4835–4840

    Article  MATH  Google Scholar 

  24. Wang H, Nishimura R, Suzuki Y, Mao L (2008) Fuzzy self-adaptive digital audio watermarking based on time-spread echo hiding. Appl Acoust 69(10):868–874

    Article  Google Scholar 

  25. Wang X-Y, Niu P-P, Yang H-Y (2009) A robust digital audio watermarking based on statistics characteristics. Pattern Recogn 42(11):3057–3064

    Article  MATH  Google Scholar 

  26. Wang X, Wang P, Zhang P, Xu S, Yang H (2013) A norm-space, adaptive, and blind audio watermarking algorithm by discrete wavelet transform. Signal Process 93(4):913–922

    Article  Google Scholar 

  27. Wang X, Wang P, Zhang P, Xu S, Yang H (2014) A blind audio watermarking algorithm by logarithmic quantization index modulation. Multimed Tools Appl 71(3):1157–1177

    Article  Google Scholar 

  28. Wu S, Huang J, Huang D, Shi YQ (2005) Efficiently self-synchronized audio watermarking for assured audio data transmission. IEEE Trans Broadcasting 51(1):69–76

    Article  Google Scholar 

  29. Xiang S (2011) Audio watermarking robust against D/A and A/D conversions. EURASIP J Adv Signal Process 2011(1):1–14

    Article  Google Scholar 

  30. Yeo I-K, Kim HJ (2003) Modified patchwork algorithm: a novel audio watermarking scheme. IEEE Trans Speech and Audio Processing 11(4):381–386

    Article  Google Scholar 

Download references

Acknowledgement

This research work was supported by the Ministry of Science and Technology, Taiwan, ROC under Grant MOST 104-2221-E-197-023.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hwai-Tsu Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, HT., Chang, JR. & Hsu, LY. Windowed and distortion-compensated vector modulation for blind audio watermarking in DWT domain. Multimed Tools Appl 76, 26723–26743 (2017). https://doi.org/10.1007/s11042-016-4202-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-016-4202-8

Keywords

Navigation