Skip to main content
Log in

Mean-field behavior of Nearest-Neighbor Oriented Percolation on the BCC Lattice Above 8 + 1 Dimensions

  • Published:
Mathematical Physics, Analysis and Geometry Aims and scope Submit manuscript

Abstract

In this paper, we consider nearest-neighbor oriented percolation with independent Bernoulli bond-occupation probability on the d-dimensional body-centered cubic (BCC) lattice \({\mathbb {L}^d}\) and the set of non-negative integers \({{\mathbb {Z}}_+}\). Thanks to the orderly structure of the BCC lattice, we prove that the infrared bound holds on \({\mathbb {L}^d} \times {{\mathbb {Z}}_+}\) in all dimensions \(d\ge 9\). As opposed to ordinary percolation, we have to deal with complex numbers due to asymmetry induced by time-orientation, which makes it hard to bound the bootstrap functions in the lace-expansion analysis. By investigating the Fourier–Laplace transform of the random-walk Green function and the two-point function, we derive the key properties to obtain the upper bounds and resolve a problematic issue in Nguyen and Yang’s bound. The issue is caused by the fact that the Fourier transform of the random-walk transition probability can take the value \(-1\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Yes.

Code Availability

One can download it from the third author’s repository https://gitlab.com/ykami/comp-lace_for_op.

References

  1. Aizenman, M., Barsky, D.J.: Sharpness of the phase transition in percolation models. Commun. Math. Phys. 108, 489–526 (1987)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Aizenman, M., Newman, C.M.: Tree graph inequalities and critical behavior in percolation models. J. Stat. Phys. 36, 107–143 (1984)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Barsky, D.J., Aizenmman, M.: Percolation critical exponents under the triangle condition. Ann. Probab. 19, 1520–1536 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bezuidenhout, C., Grimmett, G.: The critical contact process dies out. Ann. Probab. 18, 1462–1482 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  5. Borgs, C., Chayes, J.T., van der Hofstad, R., Slade, G., Spencer, J.: Random subgraphs of finite graphs. II. The lace expansion and the triangle condition. Ann. Probab. 33, 1886–1944 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Broadbent, S.R., Hammersley, J.M.: Percolation processes. I. Crystals and mazes. Proc. Camb. Philos. Soc. 53, 629–641 (1957)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Brydges, D.C., Spencer, T.: Self-avoiding walk in 5 or more dimensions. Commun. Math. Phys. 97, 125–148 (1985)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Chayes, J.T., Chayes, L.: Inequality for the infinite-cluster density in Bernoulli percolation. Phys. Rev. Lett. 56, 1619–1622 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  9. Chen, L.-C., Sakai, A.: Critical behavior and the limit distribution for long-range oriented percolation. I. Probab. Theory Relat. Fields 142, 151–188 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Duminil-Copin, H., Tassion, V.: A new proof of the sharpness of the phase transition for Bernoulli percolation and the Ising model. Commun. Math. Phys. 343, 725–745 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Duminil-Copin, H., Tassion, V., Teixeira, A.: The box-crossing property for critical two-dimensional oriented percolation. Probab. Theory Relat. Fields 171, 685–708 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fitzner, R., van der Hofstad, R.: Mean-field behavior for nearest-neighbor percolation in \(d>10\). Electron. J. Probab. 22 (2017) arXiv:1506.07977

  13. Fitzner, R., van der Hofstad, R.: Generalized approach to the non-backtracking lace expansion. Probab. Theory Relat. Fields 169, 1041–1119 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Grassberger, P.: Logarithmic corrections in \((4+1)\)-dimensional directed percolation. Phys. Rev. E 79, 052104 (2009)

    Article  ADS  Google Scholar 

  15. Grimmett, G.: Percolation, 2nd edn. Springer, New York (1999)

    Book  MATH  Google Scholar 

  16. Grimmett, G., Hiemer, P.: Directed percolation and random walk. In and Out of Equilibrium (ed., V. Sidoravicius) Birkhäuser (2002): 273–297

  17. Handa, S., Kamijima, Y., Sakai, A.: A survey on the lace expansion for the nearest-neighbor models on the BCC lattice. Taiwan. J. Math. 24, 723–784 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hara, T., Slade, G.: Mean-field critical behavior for percolation in high dimensions. Commun. Math. Phys. 128, 333–391 (1990)

    Article  ADS  MATH  Google Scholar 

  19. Hara, T., Slade, G.: Mean-field behaviour and the lace expansion. In: Grimmett, G.R. (ed.) Probability and Phase Transition, pp. 87–122. Kluwer, Rijin (1994)

    Chapter  MATH  Google Scholar 

  20. Hara, T., Slade, G.: The self-avoiding-walk and percolation critical points in high dimensions. Comb. Probab. Comput. 4, 197–215 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  21. Heydenreich, M., van der Hofstad, R.: Progress in High-Dimensional Percolation and Random Graphs. Springer, Cham (2017)

    Book  MATH  Google Scholar 

  22. Heydenreich, M., Matzke, K.: Expansion for the critical point of site percolation: the first three terms. Comb. Probab. Comput. 31, 430–454 (2022)

    Article  MathSciNet  Google Scholar 

  23. Janssen, H., Stenull, O.: Logarithmic corrections in directed percolation. Phys. Rev. E 69, 016125 (2004)

    Article  ADS  Google Scholar 

  24. Kamijima, Y.: Mean-field behavior for percolation models. Ph.D. thesis, Hokkaido University (2021). https://doi.org/10.14943/doctoral.k14347

  25. Kamijima, Y.: Mean-field behavior of nearest-neighbor oriented percolation on \({\mathbb{Z}}^{d\ge 183}\times {\mathbb{Z}}_+\)

  26. Menshikov, M.V.: Coincidence of critical points in percolation problems. Soviet Math. 33, 856–859 (1986)

    MATH  Google Scholar 

  27. Nguyen, B.G., Yang, W.-S.: Triangle condition for oriented percolation in high dimensions. Ann. Probab. 21, 1809–1844 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  28. Nguyen, B.G., Yang, W.-S.: Gaussian limit for critical oriented percolation in high dimensions. J. Stat. Phys. 78, 841–876 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Obukhov, S.P.: The problem of directed percolation. Physica 101A, 145–155 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  30. Ódor, G.: Universality classes in nonequilibrium lattice systems. Rev. Mod. Phys. 76, 663–724 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Russo, L.: On the critical percolation probabilities. Z. Warsch. Verw. Geb. 56, 229–237 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  32. Sakai, A.: Mean-field critical behavior for the contact process. J. Stat. Phys. 104, 111–143 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  33. Sakai, A.: Diagrammatic bounds on the lace-expansion coefficients for oriented percolation. (2007). arXiv:0708.2897

  34. Sakai, A.: Hyperscaling for oriented percolation in \(1+1\) space-time dimensions. J. Stat. Phys. 171, 462–469 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Schertzer, E., Sun, R., Swart, J.: The Brownian Web, the Brownian Net, and their Universality. In: Contucci, P., Giardinà, C. (eds.) Advances in Disordered Systems. Random Processes and Some Applications, pp. 270–368. Cambridge University Press, Cambridge (2016)

    Chapter  Google Scholar 

  36. Slade, G.: The Lace Expansion and its Applications. Lecture Notes in Mathematics, vol. 1879. Springer, Berlin (2006)

    Google Scholar 

  37. Toulouse, G.: Perspectives from the theory of phase transitions. Nuovo Cimento 23B, 234–240 (1974)

    Article  ADS  Google Scholar 

  38. van den Berg, J., Kesten, H.: Inequalities with applications to percolation and reliability. J. Appl. Probab. 22, 556–569 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  39. van der Hofstad, R., Sakai, A.: Critical points for spread-out self-avoiding walk, percolation and the contact process above the upper critical dimensions. Probab. Theory Relat. Fields 132, 438–470 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  40. van der Hofstad, R., Slade, G.: A generalised inductive approach to the lace expansion. Probab. Theory Relat. Fields 122, 389–430 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  41. van der Hofstad, R., Slade, G.: Convergence of critical oriented percolation to super-Brownian motion above \(4+1\) dimensions. Ann. Inst. H. Poincaré Prob. Stat. 39, 413–485 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  42. van der Hofstad, R., Slade, G.: Asymptotic expansions in \(n^{-1}\) for percolation critical values on the \(n\)-cube and \({\mathbb{Z} }^n\). Random Struct. Algorithms 27, 331–357 (2005)

    Article  MATH  Google Scholar 

  43. van der Hofstad, R., Slade, G.: Expansion in \(n^{-1}\) for percolation critical values on the \(n\)-cube and \({\mathbb{Z} }^n\): The first three terms. Comb. Probab. Comput. 15, 695–713 (2006)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

YK and SH are grateful to the National Center for Theoretical Sciences (NCTS) for providing his support and hospitality during his visit to National Chengchi University (NCCU) in the period May–June 2018. YK is also grateful for the financial support from NCCU during the visits from November 5–17, 2018, and from December 17–27, 2019. The work of LCC was supported by the Grant MOST 109-2115-M-004-010-MY3. Finally, we would like to thank Akira Sakai and the anonymous referee for their many valuable comments regarding an earlier version of this paper.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to this work.

Corresponding author

Correspondence to Yoshinori Kamijima.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Yes.

Appendices

Appendix A: Random Walk Quantities on the BCC Lattice

In this section, we show the expressions of the upper bounds on (1.2) to compute their numerical values. We use Stirling’s formula due to the property (1.1) of the BCC lattice, which helps us to obtain highly-precise estimates. Recall (1.1). Note that

$$\begin{aligned} D^{\mathbin {*}2n}(o) = \left( \left( {\begin{array}{c}2n\\ n\end{array}}\right) \frac{1}{2^{2n}}\right) ^d \le \left( \frac{1}{\sqrt{\pi n}}\right) ^d, \end{aligned}$$
(A.1)

for \(n\in {\mathbb {N}}\). Now, fix a sufficiently large number N. For \(\nu \in {\mathbb {N}}\), (A.1) and the bounds given by the integral test for convergence imply that

$$\begin{aligned} \varepsilon _1^{(\nu )}&= \sum _{n=\nu }^{\infty } D^{\mathbin {*}2n}(o) \le \sum _{n=\nu }^{\nu + N - 1} D^{\mathbin {*}2n}(o) + \sum _{n=\nu + N}^{\infty } \frac{1}{(\pi n)^{d/2}}\\&\le \sum _{n=0}^{N - 1} D^{\mathbin {*}2 (n + \nu )}(o) + \frac{1}{\pi ^{d/2} (\nu + N)^{d/2}} + \frac{1}{\pi ^{d/2}} \int \limits _{\nu + N}^{\infty } s^{-d/2} {\textrm{d}s}\\&\le \sum _{n=0}^{N - 1} D^{\mathbin {*}2 (n + \nu )}(o) + \frac{1}{\pi ^{d/2} (\nu + N)^{d/2}} + \frac{2}{\pi ^{d/2} \left( d - 2\right) } \left( \nu + N\right) ^{(2 - d)/2}. \end{aligned}$$

Moreover,

$$\begin{aligned} \varepsilon _2^{(\nu )}&= \sum _{n=\nu }^{\infty } \left( n - \nu + 1\right) D^{\mathbin {*}2n}(o)\\&\le \sum _{n=\nu }^{\nu + N - 1} \left( n - \nu + 1\right) D^{\mathbin {*}2n}(o) + \sum _{n=\nu + N}^{\infty } \left( n - \nu + 1\right) \frac{1}{(\pi n)^{d/2}}\\&\le \sum _{n=0}^{N - 1} \left( n + 1\right) D^{\mathbin {*}2 (n + \nu )}(o) + \frac{1}{\pi ^{d/2} (\nu + N)^{d/2 - 1}}\\&\quad + \frac{1}{\pi ^{d/2}} \int \limits _{\nu + N}^{\infty } s^{1 - d/2} {\textrm{d}s} - \frac{\nu - 1}{\pi ^{d/2}} \int \limits _{\nu + N}^{\infty } s^{-d/2} {\textrm{d}s}\\&\le \sum _{n=0}^{N - 1} \left( n + 1\right) D^{\mathbin {*}2 (n + \nu )}(o) + \frac{1}{\pi ^{d/2} (\nu + N)^{(d - 2)/2}}\\&\quad + \frac{2}{\pi ^{d/2} \left( d - 4\right) } \left( \nu + N\right) ^{(4 - d)/2} - \frac{2 \left( \nu - 1\right) }{\pi ^{d/2} \left( d - 2\right) } \left( \nu + N\right) ^{(2 - d)/2}. \end{aligned}$$

When \(N=500\), we obtain numerical values in Table 1 by directly computing these expressions.

Table 1 Numerical values of random-walk quantities on the BCC lattice

Proof of Lemma 2.3

In this section, we prove Lemma 2.3. It is the result of Lemma 6.1 below. In this lemma, we first divide percolation events by cases, which are based on the fact of whether or not double connections are collapsed and where a path intersects a double connection. Next, these observations yield a lot of disjoint events such as \(\lbrace \varvec{x} \rightarrow \varvec{y}\rbrace \circ \lbrace \varvec{u} \rightarrow \varvec{v}\rbrace \), where \(\circ \) denotes that the left and right events must occur disjointly. Then, by the BK inequality [38], we bound the probability of such events in terms of the product of the two-point functions, e.g.,

$$\begin{aligned} {\mathbb {P}}_p\bigl (\lbrace \varvec{x} \rightarrow \varvec{y}\rbrace \circ \lbrace \varvec{u} \rightarrow \varvec{v}\rbrace \bigr ) \le {\mathbb {P}}_p(\varvec{x} \rightarrow \varvec{y}) {\mathbb {P}}_p(\varvec{u} \rightarrow \varvec{v}) = \varphi _p(\varvec{y} - \varvec{x}) \varphi _p(\varvec{v} - \varvec{u}). \end{aligned}$$

Such a product is represented by a diagram like (2.6). Also, the method to obtain Lemma 2.3 from Lemma 6.1 is based on decomposing diagrams by the inequality

$$\begin{aligned} \left\Vert f g \right\Vert _1 :=\sum _{\varvec{x}\in {\mathbb {L}^d} \times {{\mathbb {Z}}_+}} f(\varvec{x}) g(\varvec{x}) \le \left\Vert f \right\Vert _\infty \left\Vert g \right\Vert _1, \end{aligned}$$
(B.1)

where f and g are functions depending on a sum of a product of the two-point functions.

Lemma 6.1

For \({\varvec{x}\in {\mathbb {L}^d} \times {{\mathbb {Z}}_+}}\) and \(N\ge 2\),

(B.2)
(B.3)
(B.4)

Proof of (B.2) in Lemma 6.1

This proof is inspired by [39, Sect. 3.1]. First, we rewrite the event in \(\pi _p^{(0)}(\varvec{x})\). To do so, we introduce an ordering among bonds as follows. Let \({{\mathscr {B}}((x, t)) = \{((x, t), (y, t+1)) \in ({\mathbb {L}^d} \times {{\mathbb {Z}}_+})^2 \mid x - y \in {\mathscr {N}}^d\}}\) for \({(x, t) \in {\mathbb {L}^d} \times {{\mathbb {Z}}_+}}\), which is the set of directed bonds whose bottoms are (xt). We can order the elements in \({\mathscr {B}}((x, t))\) because it is a finite set. For a pair of bonds \(\varvec{b}_1\) and \(\varvec{b}_2\), we write \(\varvec{b}_1 \prec \varvec{b}_2\) if \(\varvec{b}_1\) is smaller than \(\varvec{b}_2\) in that ordering. Then, we obtain

$$\begin{aligned} \pi _p^{(0)}(\varvec{x})&= {\mathbb {P}}_p(\varvec{o} \Rightarrow \varvec{x} \ne \varvec{o}) \nonumber \\&= {} {\mathbb {P}}_p\left( \bigsqcup _{\varvec{b} \in {\mathscr {B}}(\varvec{o})} \Big ({\{\varvec{o} \rightarrow x\} \circ \{\varvec{b} \rightarrow {x}\}} \cap \{{\forall \varvec{b}'\prec \varvec{b}, \varvec{b}' \not \rightarrow \varvec{x}\}}\Big )\right) \nonumber \\&= {} {\mathbb {P}}_p\left( \bigsqcup _{\varvec{b} \in {\mathscr {B}}(\varvec{o})} \Big ({\{\varvec{o} \rightarrow {x}\} \circ \{\varvec{b} \rightarrow {x}\}} \cap \{{\forall \varvec{b}'\succ \varvec{b}, \varvec{b}' \not \rightarrow \varvec{x}\}}\Big )\right) \nonumber \\&= {} \frac{1}{2} \sum _{\varvec{b} \in {\mathscr {B}}(\varvec{o})} \Bigl ({\mathbb {P}}_p\left( {\lbrace \varvec{o} \rightarrow \varvec{x}\rbrace \circ \lbrace \varvec{b} \rightarrow \varvec{x}\rbrace } \cap \lbrace \forall \varvec{b}'\prec \varvec{b}, \varvec{b}' \not \rightarrow \varvec{x}\rbrace \right) \nonumber \\&\quad + {\mathbb {P}}_p\left( \big \{{\lbrace \varvec{o} \rightarrow \varvec{x}\rbrace \circ \lbrace \varvec{b} \rightarrow \varvec{x}\rbrace }\big \} \cap \lbrace \forall \varvec{b}'\succ \varvec{b}, \varvec{b}' \not \rightarrow \varvec{x}\rbrace \right) \Bigr ). \end{aligned}$$
(B.5)

Next, we rewrite the event in \(\pi _p^{(1)}(\varvec{x})\). By definition, we can easily see that

$$\begin{aligned} E\left( \varvec{b}, \varvec{x}; \tilde{{\mathcal {C}}}^{\varvec{b}}(\varvec{y})\right) \subset \{{y} \rightarrow {x}\} \circ \{{b} \rightarrow {x}\}. \end{aligned}$$
(B.6)

By splitting the event \(\lbrace \varvec{o} \Rightarrow \underline{\varvec{b}}\rbrace \) into two events based on whether \(\underline{\varvec{b}}\) equals \(\varvec{o}\) or not,

$$\begin{aligned} \pi _p^{(1)}(\varvec{x})&= {} \sum _{\varvec{b}} {\mathbb {P}}_p\left( \{\varvec{o} \Rightarrow \underline{\varvec{b}}\} \cap E(\varvec{b}, \varvec{x}; \tilde{{\mathcal {C}}}^{\varvec{b}}(\varvec{o}))\right) \nonumber \\&= {} \sum _{\varvec{b} \in {\mathscr {B}}(\varvec{o})} {\mathbb {P}}_p \left( E(\varvec{b}, \varvec{x}; \tilde{{\mathcal {C}}}^{\varvec{b}}(\varvec{o}))\right) + \sum _{\varvec{b}} {\mathbb {P}}_p \left( {\{\varvec{o} \Rightarrow \underline{\varvec{b}} \ne \varvec{o}}\} \cap E(\varvec{b}, \varvec{x}; \tilde{{\mathcal {C}}}^{\varvec{b}}(\varvec{o}))\right) \nonumber \\&= {} \sum _{\varvec{b} \in {\mathscr {B}}(\varvec{o})} \biggl ( {\mathbb {P}}_p\big (\{\varvec{o} \rightarrow \varvec{x}\} \circ \{\varvec{b} \rightarrow \varvec{x}\}\big ) \nonumber \\&\quad - {\mathbb {P}}_p \left( {\lbrace \varvec{o} \rightarrow \varvec{x}\rbrace \circ \lbrace \varvec{b} \rightarrow \varvec{x}\rbrace } \setminus E(\varvec{b}, \varvec{x}; \tilde{{\mathcal {C}}}^{\varvec{b}}(\varvec{o}))\right) \biggr ) \nonumber \\&\quad + \sum _{\varvec{b}} {\mathbb {P}}_p \left( \lbrace \varvec{o} \Rightarrow \underline{\varvec{b}} \ne \varvec{o}\rbrace \cap E(\varvec{b}, \varvec{x}; \tilde{{\mathcal {C}}}^{\varvec{b}}(\varvec{o}))\right) . \end{aligned}$$
(B.7)

Since both

$$\begin{aligned} \lbrace \forall \varvec{b}'\prec \varvec{b}, \varvec{b}' \not \rightarrow \varvec{x}\rbrace \sqcup \lbrace \exists \varvec{b}''\prec \varvec{b}, \varvec{b}'' \rightarrow \varvec{x}\rbrace \end{aligned}$$

and

$$\begin{aligned} \{\forall \varvec{b}'\succ \varvec{b}, \varvec{b}' \not \rightarrow \varvec{x}\} \sqcup \{\exists \varvec{b}''\succ \varvec{b}, \varvec{b}'' \rightarrow \varvec{x}\} \end{aligned}$$

are the whole event, respectively,

$$\begin{aligned}&{\mathbb {P}}_p\big (\{\varvec{o} \rightarrow \varvec{x}\} \circ \{\varvec{b} \rightarrow \varvec{x}\}\big )\\&\quad = {} \underbrace{\mathbb {P}_p \left( \{{\{\varvec{o} \rightarrow \varvec{x}\} \circ \{\varvec{b} \rightarrow \varvec{x}\}\}} \cap { \{\forall \varvec{b}'\prec \varvec{b}, \varvec{b}' \not \rightarrow \varvec{x}\} \cap \{\forall \varvec{b}''\succ \varvec{b}, \varvec{b}'' \not \rightarrow \varvec{x}\} }\right) }_{=0}\\&\qquad + {\mathbb {P}}_p \left( {{\{\{{\varvec{o}} \rightarrow \varvec{x}}\} \circ \{{\varvec{b} \rightarrow \varvec{x}}}\}\} \cap {\{\{ {\forall \varvec{b}'\prec \varvec{b}, \varvec{b}' \not \rightarrow \varvec{x}}\}\} \cap \{{\exists \varvec{b}''\succ \varvec{b}, \varvec{b}'' \rightarrow \varvec{x}}\}\} }\right) \\&\qquad + {\mathbb {P}}_p \left( {\{\{{{\varvec{o}} \rightarrow \varvec{x}}\} \circ \{{|\varvec{b}} \rightarrow {x}\}}\} \cap { \{\{\forall | {\varvec{b}}'\succ {\varvec{b}}, {\varvec{b}}' \not \rightarrow \varvec{x}\} \cap {\exists \varvec{b}''\prec \varvec{b}, \varvec{b}'' \rightarrow \varvec{x}}\}\} }\right) \\&\qquad + {\mathbb {P}}_p \left( {{\{\{\varvec{o} \rightarrow \varvec{x}}\} \circ \{{\varvec{b} \rightarrow \varvec{x}}}\}\} \cap {\{\{ {\forall \varvec{b}'\prec \varvec{b}, \varvec{b}' \not \rightarrow \varvec{x}}\}\} \cap \{{\exists \varvec{b}''\succ {\varvec{b}}, {\varvec{b}}'' \rightarrow \varvec{x}}\}\} }\right) \\&\quad = {} {\mathbb {P}}_p \left( {\{\{{\varvec{o} \rightarrow \varvec{x}}\} \circ \{\{{{\varvec{b}} \rightarrow \varvec{x}}}\}\} \cap \{{\forall \varvec{b}'\prec \varvec{b}, \varvec{b}' \not \rightarrow \varvec{x}\}}\right) \\&\qquad + {\mathbb {P}}_p \left( {\{\{{\varvec{o} \rightarrow \varvec{x}}\} \circ {\{{\varvec{b}} \rightarrow \varvec{x}}} \cap {\forall \varvec{b}'\succ \varvec{b}, \varvec{b}' \not \rightarrow \varvec{x}}\right) \}\\&\qquad + {\mathbb {P}}_p \left( {\lbrace \{\varvec{o} \rightarrow \varvec{x}\rbrace \circ \lbrace \varvec{b} \rightarrow \varvec{x}\rbrace } \cap { \lbrace \exists \varvec{b}'\prec \varvec{b}, \varvec{b}' \rightarrow \varvec{x}\rbrace \cap \lbrace \exists \varvec{b}''\succ \varvec{b}, \varvec{b}'' \rightarrow \varvec{x}\rbrace }\right) . \end{aligned}$$

By (B.5), taking the sum of the above over \(\varvec{b} \in {\mathscr {B}}(\varvec{o})\) yields

$$\begin{aligned}{} & {} \sum _{\varvec{b} \in {\mathscr {B}}(\varvec{o})} {\mathbb {P}}_p \big (\lbrace \varvec{o} \rightarrow \varvec{x}\rbrace \circ \lbrace \varvec{b} \rightarrow \varvec{x}\rbrace \big ) = 2 {\mathbb {P}}_p \left( \varvec{o} \Rightarrow \varvec{x} \ne \varvec{o}\right) \nonumber \\{} & {} \quad + \sum _{\varvec{b} \in {\mathscr {B}}(\varvec{o})} {\mathbb {P}}_p { {\lbrace \varvec{o} \rightarrow \varvec{x}\rbrace \circ \lbrace \varvec{b} \rightarrow \varvec{x}\rbrace } \cap { \lbrace \exists \varvec{b}'\prec \varvec{b}, \varvec{b}' \rightarrow \varvec{x}\rbrace \cap \lbrace \exists \varvec{b}''\succ \varvec{b}, \varvec{b}'' \rightarrow \varvec{x}\rbrace } }.\nonumber \\ \end{aligned}$$
(B.8)

Substituting (B.8) into (B.7) and subtracting (B.5), we obtain

$$\begin{aligned}{} & {} \pi _p^{(1)}(\varvec{x}) - \pi _p^{(0)}(\varvec{x}) = \underbrace{{\mathbb {P}}_p(\varvec{o} \Rightarrow \varvec{x} \ne \varvec{o})}_{\mathrm {(a)}}\nonumber \\{} & {} \quad + \underbrace{\sum _{\varvec{b} \in {\mathscr {B}}(\varvec{o})} {\mathbb {P}}_p \left( {\lbrace \varvec{o} \rightarrow \varvec{x}\rbrace \circ \lbrace \varvec{b} \rightarrow \varvec{x}\rbrace } \cap { \lbrace \exists \varvec{b}'\prec \varvec{b}, \varvec{b}' \rightarrow \varvec{x}\rbrace \cap \lbrace \exists \varvec{b}''\succ \varvec{b}, \varvec{b}'' \rightarrow \varvec{x}\rbrace } \right) }_{\mathrm {(b)}}\nonumber \\{} & {} \quad - \underbrace{\sum _{\varvec{b} \in {\mathscr {B}}(\varvec{o})} {\mathbb {P}}_p \left( {\{\{{\varvec{o} \rightarrow \varvec{x}}\} \circ \{{{\varvec{b}} \rightarrow \varvec{x}\}\}}} \setminus E(\varvec{b}, \varvec{x}; \tilde{{\mathcal {C}}}^{\varvec{b}}(\varvec{o}))\right) }_{\mathrm {(c)}}\nonumber \\{} & {} \quad + \underbrace{\sum _{{b}} {\mathbb {P}}_p \left( {\lbrace {\varvec{o}} \Rightarrow \underline{\varvec{b}}\} \ne {\varvec{o}}\rbrace } \cap E({\varvec{b}}, {\varvec{x}}; \tilde{{\mathcal {C}}}^{\varvec{b}}(\varvec{o}))\right) }_{\mathrm {(d)}}. \end{aligned}$$
(B.9)

Finally, we show how (B.9) leads to the upper bound (B.2). In the following, we repeatedly use the trivial inequality

$$\begin{aligned} \varphi _p(\varvec{x}) \varvec{\mathbb {1}}_{\{o \ne x\}} \le \left( q_p \mathbin {\star }\varphi _p\right) (\varvec{x}) \end{aligned}$$
(B.10)

and the fact that, if there are two disjoint connections, then their lengths are at least two for oriented percolation. By Boole’s and the BK inequalities, (a) in (B.9) is bounded above as

$$ \begin{aligned}&{\mathbb {P}}_p(\varvec{o} \Rightarrow \varvec{x} \ne \varvec{o})\\&\quad ={\mathbb {P}}_p\Biggl (\bigcup _{\begin{array}{c} \varvec{b}_1, \varvec{b}_2\in {\mathscr {B}}(\varvec{o})\\ (\varvec{b}_1 \prec \varvec{b}_2) \end{array}} \bigcup _{\begin{array}{c} \varvec{b}_1'\in {\mathscr {B}}(\overline{\varvec{b}}_1),\\ \varvec{b}_2'\in {\mathscr {B}}(\overline{\varvec{b}}_2) \end{array}}\\&\qquad \Big \{\lbrace \varvec{b}_1\text { is occupied} \mathrel { \& } \varvec{b}_1'\rightarrow \varvec{x}\rbrace \circ \lbrace \varvec{b}_2\text { is occupied} \mathrel { \& } \varvec{b}_2'\rightarrow \varvec{x}\rbrace \Big \}\Biggr )\\&\quad \le \sum _{\begin{array}{c} \varvec{b}_1, \varvec{b}_2\in {\mathscr {B}}(\varvec{o})\\ (\varvec{b}_1 \prec \varvec{b}_2) \end{array}} \sum _{\begin{array}{c} \varvec{b}_1'\in {\mathscr {B}}(\overline{\varvec{b}}_1),\\ \varvec{b}_2'\in {\mathscr {B}}(\overline{\varvec{b}}_2) \end{array}} q_p(\varvec{b}_1) q_p(\varvec{b}_1') \varphi _p(\varvec{x} - \overline{\varvec{b}}_1') \cdot q_p(\varvec{b}_2) q_p(\varvec{b}_2') \varphi _p(\varvec{x} - \overline{\varvec{b}}_2')\\&\quad \le \frac{1}{2} \left( q_p^{\mathbin {\star }2} \mathbin {\star }\varphi _p\right) (\varvec{x})^2, \end{aligned}$$

which corresponds to the 1st term in (B.2). The factor 1/2 in the last line is due to ignoring the ordering. To bound (b) in (B.9), we note that, for \(\varvec{b}\in {\mathscr {B}}(\varvec{o})\),

$$\begin{aligned}{} & {} {\{\{{\varvec{o} \rightarrow \varvec{x}}\} \circ \{{{\varvec{b}} \rightarrow \varvec{x}}}\}\} \cap { \{{\exists {\varvec{b}}'\prec \varvec{b}, \varvec{b}' \rightarrow \varvec{x}}\} \cap \{{\exists \varvec{b}''\succ {\varvec{b}}, \varvec{b}'' \rightarrow \varvec{x}}}\}\}\\{} & {} \subset \bigcup _{\varvec{b}', \varvec{b}'' \in {\mathscr {B}}(\varvec{o})} \bigcup _{\varvec{y}} { \{\{{\varvec{b} \rightarrow \varvec{y} \rightarrow \varvec{x}}\} \circ \{{\varvec{b}' \rightarrow \varvec{x}}\} \circ \{{{\varvec{b}}'' \rightarrow \varvec{y}} }\}\}. \end{aligned}$$

By Boole’s and the BK inequalities, we have

$$\begin{aligned}{} & {} \sum _{\varvec{b} \in {\mathscr {B}}(\varvec{o})} {\mathbb {P}}_p \left( {\{\{{\varvec{o} \rightarrow \varvec{x}}\} \circ \{{{\varvec{b}} \rightarrow \varvec{x}}}\} \cap { \{\{{\exists {\varvec{b}}'\prec \varvec{b}, \varvec{b}' \rightarrow \varvec{x}}\} \cap \{{\exists {\varvec{b}}''\succ \varvec{b}, \varvec{b}'' \rightarrow \varvec{x}} }\right) \}\}\\{} & {} \qquad \qquad \le \sum _{\varvec{y}} \left( q_p^{\mathbin {\star }2} \mathbin {\star }\varphi _p\right) (\varvec{y})^2 \left( q_p^{\mathbin {\star }2} \mathbin {\star }\varphi _p\right) (\varvec{x}) \varphi _p(\varvec{x} - \varvec{y}), \end{aligned}$$

which corresponds to the 2nd term in (B.2). To bound (c) in (B.9), we note that, for \(\varvec{b}\in {\mathscr {B}}(\varvec{o})\),

$$\begin{aligned}&{\lbrace {\varvec{o}} \rightarrow \varvec{x}\rbrace \circ \lbrace \varvec{b} \rightarrow \varvec{x}\rbrace } \setminus E(\varvec{b}, \varvec{x}; \tilde{{\mathcal {C}}}^{\varvec{b}}(\varvec{o})) \nonumber \\&\quad \subset {} \bigcup _{\varvec{y}} \bigcup _{\varvec{b}'} \Bigl \{ \{ \lbrace {\varvec{o}} \rightarrow \varvec{y} \rightarrow \varvec{x}\rbrace \circ \lbrace {\varvec{b}} \rightarrow \varvec{b}' \rightarrow \varvec{x}\rbrace \circ \lbrace \varvec{y} \rightarrow \underline{\varvec{b}}'\rbrace \} \nonumber \\&\qquad \sqcup \{ {{{\varvec{o}} \rightarrow \varvec{b}' \rightarrow \varvec{x}}\} \circ \{ {{\varvec{b}} \rightarrow \varvec{y} \rightarrow \underline{\varvec{b}}'}\} \circ \lbrace \varvec{y} \rightarrow \varvec{x}\rbrace } \Bigr \} \nonumber \\&\quad ={}\bigcup _{\varvec{b}'} { \lbrace \varvec{o} \rightarrow \varvec{x}\rbrace \circ \lbrace {\varvec{o}} \rightarrow \underline{\varvec{b}}'\rbrace \circ \lbrace \varvec{b} \rightarrow \varvec{b}' \rightarrow \varvec{x}\rbrace } \nonumber \\&\qquad \sqcup \bigcup _{\varvec{b}'} { \lbrace \varvec{o} \rightarrow \underline{\varvec{b}}' \rightarrow \varvec{x}\rbrace \circ \lbrace \varvec{b} \rightarrow \varvec{b}' \rightarrow \varvec{x}\rbrace } \nonumber \\&\qquad \sqcup \bigcup _{\varvec{b}'} \bigcup _{\varvec{y} \ne \varvec{o}, \underline{\varvec{b}}'} { \lbrace \varvec{o} \rightarrow \varvec{y} \rightarrow \varvec{x}\rbrace \circ \lbrace \varvec{b} \rightarrow \varvec{b}' \rightarrow \varvec{x}\rbrace \circ \lbrace \varvec{y} \rightarrow \underline{\varvec{b}}'\rbrace } \nonumber \\&\qquad \sqcup \bigcup _{\varvec{b}'} { \lbrace \varvec{o} \rightarrow \varvec{b}' \rightarrow \varvec{x}\rbrace \circ \lbrace \varvec{b} \rightarrow \underline{\varvec{b}}'\rbrace \circ \lbrace \underline{\varvec{b}}' \rightarrow \varvec{x}\rbrace } \nonumber \\&\qquad \sqcup \bigcup _{\varvec{b}'} \bigcup _{\varvec{y} \ne \underline{\varvec{b}}'} { \lbrace \varvec{o} \rightarrow \varvec{b}' \rightarrow \varvec{x}\rbrace \circ \lbrace \varvec{b} \rightarrow \varvec{y} \rightarrow \underline{\varvec{b}}'\rbrace \circ \lbrace \varvec{y} \rightarrow \varvec{x}\rbrace }. \end{aligned}$$
(B.11)

By Boole’s and the BK inequalities, we have

$$\begin{aligned}&\sum _{\varvec{b} \in {\mathscr {B}}(\varvec{o})}{\mathbb {P}}_p\left( \{ {{\varvec{o} \rightarrow \varvec{x}}\} \circ \lbrace {\varvec{b}} \rightarrow \varvec{x}\rbrace } \setminus E(\varvec{b}, \varvec{x}; \tilde{{\mathcal {C}}}^{\varvec{b}}(\varvec{o}))\right) \\&\quad \le {} \sum _{\varvec{u}} \left( q_p^{\mathbin {\star }3} \mathbin {\star }\varphi _p\right) (\varvec{x}) \left( q_p^{\mathbin {\star }2} \mathbin {\star }\varphi _p\right) (\varvec{u})^2 \left( q_p \mathbin {\star }\varphi _p\right) (\varvec{x} - \varvec{u})\\&\quad \quad + \sum _{\varvec{u}} \left( q_p^{\mathbin {\star }2} \mathbin {\star }\varphi _p\right) (\varvec{u})^2 \left( q_p^{\mathbin {\star }2} \mathbin {\star }\varphi _p\right) (\varvec{x} - \varvec{u})^2\\&\quad \quad + \sum _{\varvec{u}, \varvec{y}} \left( q_p^{\mathbin {\star }2} \mathbin {\star }\varphi _p\right) (\varvec{u}) \left( q_p \mathbin {\star }\varphi _p\right) (\varvec{y}) \left( q_p \mathbin {\star }\varphi _p\right) (\varvec{u} - \varvec{y})\\&\qquad \quad \times \left( q_p \mathbin {\star }\varphi _p\right) (\varvec{x} - \varvec{u}) \left( q_p^{\mathbin {\star }2} \mathbin {\star }\varphi _p\right) (\varvec{x} - \varvec{y})\\&\quad + \sum _{\varvec{u}} \left( q_p^{\mathbin {\star }2} \mathbin {\star }\varphi _p\right) (\varvec{u})^2 \left( q_p^{\mathbin {\star }2} \mathbin {\star }\varphi _p\right) (\varvec{x} - \varvec{u})^2\\&\quad + \sum _{\varvec{u}, \varvec{y}} \left( q_p^{\mathbin {\star }2} \mathbin {\star }\varphi _p\right) (\varvec{u}) \left( q_p \mathbin {\star }\varphi _p\right) (\varvec{y}) \left( q_p \mathbin {\star }\varphi _p\right) (\varvec{u} - \varvec{y})\\&\qquad \times \left( q_p^{\mathbin {\star }2} \mathbin {\star }\varphi _p\right) (\varvec{x} - \varvec{y}) \left( q_p \mathbin {\star }\varphi _p\right) (\varvec{x} - \varvec{u}). \end{aligned}$$

Each term in the above upper bound corresponds to contributions of the 3rd term, the 4th term, the 5th term, the 4th term and the 6th term in (B.2), respectively. To bound (d) in (B.9), we apply (B.6) and split the below event into two events based on where the branching point is assigned:

$$\begin{aligned}{} & {} {\{ \varvec{o} \Rightarrow \varvec{u} \ne \varvec{o}}\} \cap \lbrace \varvec{o} \rightarrow \varvec{x}\rbrace \subset {\lbrace \varvec{o} \Rightarrow \varvec{u} \ne \varvec{o}\rbrace \circ \lbrace \varvec{o} \rightarrow \varvec{x}\rbrace }\nonumber \\{} & {} \quad \cup \bigcup _{\begin{array}{c} \varvec{y} \ne {o}\\ ({\mathfrak {t}}(\varvec{y}) \le {\mathfrak {t}}(\varvec{u})) \end{array}} {\lbrace \varvec{o} \rightarrow \varvec{u}\rbrace \circ \lbrace \varvec{o} \rightarrow \varvec{y} \rightarrow \varvec{u}\rbrace \circ \lbrace \varvec{y} \rightarrow \varvec{x}\rbrace }. \end{aligned}$$
(B.12)

Then, we obtain

(B.13)

Applying the BK [38] inequality and the same method for (a) to the right-most in the above, and paying attention to the disjointness of the connections, we arrive at

$$\begin{aligned}&\sum _{\varvec{b}} {\mathbb {P}}_p\left( \lbrace \varvec{o} \Rightarrow \underline{\varvec{b}} \ne \varvec{o}\rbrace \cap E(\varvec{b}, \varvec{x}; \tilde{{\mathcal {C}}}^{\varvec{b}}(\varvec{o}))\right) \\&\quad \le {} \frac{1}{2} \sum _{\varvec{u}} \left( q_p^{\mathbin {\star }2} \mathbin {\star }\varphi _p\right) (\varvec{u})^2 \left( q_p \mathbin {\star }\varphi _p\right) (\varvec{x} - \varvec{u}) \left( q_p^{\mathbin {\star }3} \mathbin {\star }\varphi _p\right) (\varvec{x})\\&\qquad + \sum _{\varvec{u}} \left( q_p^{\mathbin {\star }2} \mathbin {\star }\varphi _p\right) (\varvec{u})^2 \left( q_p^{\mathbin {\star }2} \mathbin {\star }\varphi _p\right) (\varvec{x} - \varvec{u})^2\\&\qquad + \sum _{\varvec{u}, \varvec{y}} \left( q_p^{\mathbin {\star }2} \mathbin {\star }\varphi _p\right) (\varvec{u}) \left( q_p \mathbin {\star }\varphi _p\right) (\varvec{y}) \left( q_p \mathbin {\star }\varphi _p\right) (\varvec{u} - \varvec{y})\\&\qquad \times \left( q_p \mathbin {\star }\varphi _p\right) (\varvec{x} - \varvec{u}) \left( q_p^{\mathbin {\star }2} \mathbin {\star }\varphi _p\right) (\varvec{x} - \varvec{y}). \end{aligned}$$

Each term in the above upper bound corresponds to contributions of the 3rd term, the 4th term and the 5th term in (B.2), respectively. Combining the upper bounds on (a)–(d) completes the proof of (B.2). \(\square \)

Proof of (B.3) in Lemma 6.1

It is not hard to prove the upper bound by using (B.6), (B.11) and (B.14), so that we omit it. \(\square \)

Proof of (B.4) in Lemma 6.1

By definition,

$$\begin{aligned}{} & {} E(\varvec{b}, \varvec{u}; \tilde{{\mathcal {C}}}^{\varvec{b}}(\varvec{v})) \cap \lbrace \overline{\varvec{b}} \rightarrow \varvec{x}\rbrace \nonumber \\{} & {} \quad \subset \bigcup _{\begin{array}{c} \varvec{y}\\ ({\mathfrak {t}}(\underline{\varvec{b}}) < {\mathfrak {t}}(\varvec{y}) \le {\mathfrak {t}}(\varvec{u})) \end{array}} \Bigl \{ \lbrace {\varvec{b} \rightarrow \varvec{u}}\rbrace \circ \lbrace \varvec{v} \rightarrow \varvec{y} \rightarrow \varvec{u}\rbrace \circ \lbrace \varvec{y} \rightarrow \varvec{x}\rbrace \nonumber \\{} & {} \qquad \cup \lbrace {\varvec{b} \rightarrow \varvec{y} \rightarrow \varvec{u}}\rbrace \circ \{ {\varvec{v} \rightarrow \varvec{u}}\} \circ \lbrace \varvec{y} \rightarrow \varvec{x}\rbrace \Bigr \}. \end{aligned}$$
(B.14)

Paying attention to the disjointness of connections and the magnitude relationship between times, we obtain

By applying (B.14) to the above repeatedly,

$$\begin{aligned} \pi _p^{(N)}(\varvec{x}){} & {} \le \sum _{\varvec{v}_1}\sum _{\begin{array}{c} \{\varvec{y}_i\}_{i=2}^{N}, \{\varvec{u}_i\}_{i=1}^{N}\\ (\forall i:{\mathfrak {t}}(\varvec{u}_{i-1}) < {\mathfrak {t}}(\varvec{y}_i) \le {\mathfrak {t}}(\varvec{u}_i)) \end{array}}\\{} & {} \quad \Bigl ( {\mathbb {P}}_p\big (\lbrace \varvec{o} \Rightarrow \varvec{u}_1\rbrace \cap \lbrace (\varvec{u}_1, \varvec{v}_1) \rightarrow \varvec{u}_2\rbrace \circ \lbrace \varvec{o} \rightarrow \varvec{y}_2\rbrace \big )\\{} & {} \qquad +{\mathbb {P}}_p\big (\lbrace \varvec{o} \Rightarrow \varvec{u}_1\rbrace \cap \lbrace (\varvec{u}_1, \varvec{v}_1) \rightarrow \varvec{y}_2\rbrace \circ \lbrace \varvec{o} \rightarrow \varvec{u}_2\rbrace \big ) \Bigr )\\{} & {} \qquad \times \left( \prod _{j=2}^{N-1} \Xi (\varvec{y}_j, \varvec{u}_j; \varvec{y}_{j+1}, \varvec{u}_{j+1})\right) \frac{1}{2} \Xi (\varvec{y}_N, \varvec{u}_N; \varvec{x}, \varvec{x}). \end{aligned}$$

Finally, using Boole’s and the BK [38] inequality, and applying a similar method to (B.2), we arrive in (B.4). \(\square \)

Multiplying the diagrammatic bounds in Lemma 6.1 by the factors \(m^t\), t or \(1 - \cos k\cdot x\), and taking the sum of them, we obtain Lemma 2.3. The upper bounds (2.13)–(2.9) also require a telescopic inequality for the cosine function. Since its proof is quite the same as the literature, we omit it.

Lemma 6.2

([12, Lemma 2.13] or [21, Lemma 7.3]) Let \(J\ge 1\) and \(t_j\in {\mathbb {R}}\) for \(j=1, \dots , J\). Then,

$$\begin{aligned} 0 \le 1 - \cos \sum _{j=1}^{J}t_j \le J \sum _{j=1}^{J}\left( 1 - \cos t_j\right) . \end{aligned}$$
(B.15)

Sketch proof of Lemma 2.3

We only deal with three examples of the bounds on the sum of a diagram multiplied by the factors \(m^t\), t or \(1 - \cos k\cdot x\) because one can easily calculate the other bounds on the analogy of such examples. The following proof is almost identical to the proof of [17, Lemma 5.3].

First, we consider the bounds (2.7)–(2.9). By the translation-invariance, for example,

which corresponds to the last term in the right hand side in (2.7). In the second equality, we have used the translation invariance.

Next, we consider the bounds (2.10)–(2.12). Note that

$$\begin{aligned}{} & {} \left( q_p \mathbin {\star }\varphi _p\right) (x, t) t \le \left( q_p \mathbin {\star }\varphi _p^{\mathbin {\star }2}\right) (x, t),\\{} & {} \left( q_p^{\mathbin {\star }2} \mathbin {\star }\varphi _p\right) (x, t) t \le \left( q_p^{\mathbin {\star }2} \mathbin {\star }\varphi _p^{\mathbin {\star }2}\right) (x, t) + \left( q_p \mathbin {\star }\varphi _p^{\mathbin {\star }2}\right) (x, t). \end{aligned}$$

By using the above inequalities, for example,

which corresponds to the 5th term in the right hand side in (2.11).

Finally, we consider (2.13)–(2.15). By Lemma 6.2, for example,

which corresponds to the last term on the right hand side in (2.14). \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, LC., Handa, S. & Kamijima, Y. Mean-field behavior of Nearest-Neighbor Oriented Percolation on the BCC Lattice Above 8 + 1 Dimensions. Math Phys Anal Geom 26, 4 (2023). https://doi.org/10.1007/s11040-022-09441-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11040-022-09441-6

Keywords

Mathematics Subject Classification

Navigation