Skip to main content
Log in

Cluster Expansion for the Ising Model in the Canonical Ensemble

  • Published:
Mathematical Physics, Analysis and Geometry Aims and scope Submit manuscript

Abstract

We show the validity of the cluster expansion in the canonical ensemble for the Ising model. We compare the lower bound of its radius of convergence with the one computed by the virial expansion working in the grand-canonical ensemble. Using the cluster expansion we give direct proofs with quantification of the higher order error terms for the decay of correlations, central limit theorem and large deviations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Del Grosso, G.: On the local central limit theorem for Gibbs processes. Commun. Math. Phys. 37(2), 141–160 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  2. Dobrushin, R.L., Shlosman, S.: Large and moderate deviations in the Ising model. Advances in Soviet Mathematics 20, 91–219 (1994)

    MathSciNet  MATH  Google Scholar 

  3. Farrell, R.A., Morita, T., Meijer, P.H.E.: Cluster expansion for the Ising model. J. Chem. Phys. 45(1), 349–363 (1966)

    Article  ADS  Google Scholar 

  4. Fernández, R., Procacci, A.: Cluster expansion for abstract polymer models New bounds from an old approach. Commun. Math. Phys. 274(1), 123–140 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  5. Friedli, S., Velenik, Y.: Statistical mechanics of lattice systems: a concrete mathematical introduction. Cambridge University Press (2017)

  6. Gruber, C., Kunz, H.: General properties of polymer systems. Commun. Math. Phys. 22(2), 133–161 (1971)

    Article  ADS  MathSciNet  Google Scholar 

  7. Jansen, S., Kuna, T., Tsagkarogiannis, D.: Virial inversion and density functionals. arXiv preprint arXiv:1906.02322 (2019)

  8. Koteckỳ, R., Preiss, D.: Cluster expansion for abstract polymer models. Commun. Math. Phys. 103(3), 491–498 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  9. Kuna, T., Tsagkarogiannis, D.: Convergence of density expansions of correlation functions and the Ornstein–Zernike equation. In: Annales Henri Poincaré, vol. 19, pp 1115–1150. Springer (2018)

  10. Mayer, J.E., Mayer, M.G.: Statistical Mechanics. New York, Wiley (1940)

    MATH  Google Scholar 

  11. Morais, T., Procacci, A.: Continuous particles in the canonical ensemble as an abstract polymer gas. J. Stat. Phys. 151(5), 830–849 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  12. Presutti, E.: Scaling limits in statistical mechanics and microstructures in continuum mechanics Springer Science & Business Media (2008)

  13. Procacci, A., Yuhjtman, S.A.: Convergence of Mayer and virial expansions and the Penrose tree-graph identity. Lett. Math. Phys. 107(1), 31–46 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  14. Pulvirenti, E., Tsagkarogiannis, D.: Cluster expansion in the canonical ensemble. Commun. Math. Phys. 316(2), 289–306 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  15. Pulvirenti, E., Tsagkarogiannis, D.: Finite volume corrections and decay of correlations in the canonical ensemble. J. Stat. Phys. 159(5), 1017–1039 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  16. Scola, G.: Local moderate and precise large deviations via cluster expansions. Accepted for publication in Journal of Statistical Physics, arXiv preprint arXiv:2001.05826 (2020)

Download references

Acknowledgements

It is a great pleasure to thank Sabine Jansen, Errico Presutti and Dimitrios Tsagkarogiannis for their generous availability and for assisting the author with many necessary, stimulating and fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Scola.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Proofs of Theorem 3, Theorem 4 and Corollary 5

Appendix: Proofs of Theorem 3, Theorem 4 and Corollary 5

We define the following objects:

$$ J^{C}_{\mu}(N,N^{\prime}):=\frac{e^{\beta\mu N}Z^{\mathbf{0}}_{{\varLambda},\beta}(N)}{e^{\beta\mu N^{\prime}}Z^{\mathbf{0}}_{{\varLambda},\beta}(N^{\prime})}, $$
(A.1)

and

$$ K(\mu,N):=\left( \frac{{\varXi}^{\mathbf{0}}_{{\varLambda},\beta}(\mu)}{e^{\beta\mu N}Z^{\mathbf{0}}_{{\varLambda},\beta}(N)}\right)^{-1}. $$
(A.2)

Let us note that from (2.13) the term \(J^{C}_{\mu _{0}}(\tilde {N},\bar {N}_{{\varLambda }})\) can be written as:

$$ J^{C}_{\mu_{0}}(\tilde{N},\bar{N}_{{\varLambda}})=\exp\left\{ \beta\mu_{0}(\tilde{N}-\bar{N}_{{\varLambda}})+|{\varLambda}|\beta f_{{\varLambda},\beta,\mathbf{0}}(\bar{N}_{{\varLambda}})-|{\varLambda}|\beta f_{{\varLambda},\beta,\mathbf{0}}(\tilde{N})\right\}, $$
(A.3)

which is the finite volume version of (6.7) viewed in the canonical ensemble. Moreover, we can also write

$$ [K(\mu_{0},\bar N_{{\varLambda}})]^{-1}=\sum\limits_{N\ge0}J^{C}_{\mu_{0}}(N,\bar{N}_{{\varLambda}}). $$
(A.4)

Finally, before giving the proofs of the theorems, we remark that the object defined in (6.1), can be written as follows:

$$ L^{\mathbf{0}}_{{\varLambda},\beta,\mu_{0}}(\mu)=\beta|{\varLambda}|\left[p_{\beta,{\varLambda},\mathbf{0}}(\mu+\mu_{0})-p_{\beta,{\varLambda},\mathbf{0}}(\mu_{0})\right]. $$
(A.5)

Proof of Theorem 3

We rewrite \(\mathbb {P}^{\mathbf {0}}_{{\varLambda },\mu _0}(A_{\tilde {N}})\) as follows:

$$ \mathbb{P}^{\mathbf{0}}_{{\varLambda},\mu_0}(A_{\tilde{N}})=\frac{{\varXi}^{\mathbf{0}}_{{\varLambda},\beta}(\tilde{\mu}_{{\varLambda}})e^{\beta\mu_{0}\tilde{N}}}{{\varXi}^{\mathbf{0}}_{{\varLambda},\beta}(\mu_{0})e^{\beta\tilde{\mu}_{{\varLambda}}\tilde{N}}}\mathbb{P}^{\mathbf{0}}_{{\varLambda},\tilde{\mu}_{{\varLambda}}}(A_{\tilde{N}}). $$
(A.6)

In the previous one we did the Radon-Nikodým derivative of our probability measure with respect to the one with \(\tilde {\mu }_{{\varLambda }}\) instead of μ0. Note that the definition of \(\tilde {\mu }_{{\varLambda }}\) given via (2.43), i.e., such that

$$ \beta f^{GC}_{{\varLambda},\beta,\mathbf{0}}(\tilde{\rho}_{{\varLambda}})=\beta \tilde{\mu}_{{\varLambda}}\tilde{\rho}_{{\varLambda}}-\beta p_{{\varLambda},\beta,\mathbf{0}}(\tilde{\mu}_{{\varLambda}}), $$
(A.7)

is equivalent to define implicitly \(\tilde {\mu }_{{\varLambda }}\) as the chemical potential such that

$$ \frac{\tilde{N}}{|{\varLambda}|}=\mathbb{E}^{\mathbf{0}}_{{\varLambda},\tilde{\mu}_{{\varLambda}}}\left[\frac{N}{|{\varLambda}|}\right]=\frac{\partial}{\partial\mu}p_{{\varLambda},\beta,\mathbf{0}}(\mu)\bigg|_{\mu=\tilde{\mu}_{{\varLambda}}}. $$
(A.8)

Moreover, from (A.5) and (6.7) we have that this \(\tilde {\mu }_{{\varLambda }}\) is equal to the one which satisfies (6.6).

From (2.44), (2.43), (2.41) and (A.7) we get

$$ \begin{array}{@{}rcl@{}} \frac{{\varXi}^{\mathbf{0}}_{{\varLambda},\beta}(\tilde{\mu}_{{\varLambda}})e^{\beta\mu_{0}\tilde{N}}}{{\varXi}^{\mathbf{0}}_{{\varLambda},\beta}(\mu_{0})e^{\beta\tilde{\mu}_{{\varLambda}}\tilde{N}}} &= &\exp\left\{|{\varLambda}|\left[\beta\mu_{0}\tilde{\rho}_{{\varLambda}}-\beta\tilde{\mu}_{{\varLambda}}\tilde{\rho}_{{\varLambda}}+\beta p_{{\varLambda},\beta,\mathbf{0}}(\tilde{\mu}_{{\varLambda}})-\beta p_{{\varLambda},\beta,\mathbf{0}}(\mu_{0})\pm\beta\mu_{0}\bar{\rho}_{{\varLambda}}\right]\right\} \\ &=&\exp\left\{|{\varLambda}|\left[\beta f^{GC}_{{\varLambda},\beta,\mathbf{0}}(\bar{\rho}_{{\varLambda}})-\beta f^{GC}_{{\varLambda},\beta,\mathbf{0}}(\tilde{\rho}_{{\varLambda}})+\beta\mu_{0}(\tilde{\rho}_{{\varLambda}}-\bar{\rho}_{{\varLambda}})\right]\right\} \\ &=& \exp\left\{- |{\varLambda}| I^{GC}_{{\varLambda},\beta,\mathbf{0}}(\tilde{\rho}_{{\varLambda}};\bar{\rho}_{{\varLambda}})\right\}. \end{array} $$
(A.9)

On the other hand, denoting with \(\tilde {N}^{*}\) the number of particles such that

$$ \sup_{N}\left\{e^{\beta\tilde{\mu}_{{\varLambda}}N}Z^{\mathbf{0}}_{{\varLambda},\beta}(N)\right\}=e^{\beta\tilde{\mu}_{{\varLambda}}\tilde{N}^{*}}Z^{\mathbf{0}}_{{\varLambda},\beta}(\tilde{N}^{*}), $$
(A.10)

using (A.1) and (A.2) we have

$$ \mathbb{P}^{\mathbf{0}}_{{\varLambda},\tilde{\mu}_{{\varLambda}}}(A_{\tilde{N}})=J^{C}_{\tilde{\mu}_{{\varLambda}}}(\tilde{N},\tilde{N}^{*})K(\tilde{\mu}_{{\varLambda}},\tilde{N}^{*}). $$
(A.11)

The novelty here is that we compute the above term using cluster expansions instead of inverting the characteristic function. First, we recall that we have

$$ |\tilde{N}-\tilde{N}^{*}|\le C, $$
(A.12)

for some C > 0 which does not depend on Λ. Then we find

$$ \begin{array}{@{}rcl@{}} J^{C}_{\tilde{\mu}_{{\varLambda}}}(\tilde{N},\tilde{N}^{*})&=&\exp\left\{ S^{\prime}_{|{\varLambda}|}(\tilde{\rho}_{{\varLambda}}^{*})(\tilde{N}-\tilde{N}^{*})-\sum\limits_{m\ge 2}\frac{(\tilde{N}-\tilde{N}^{*})^{m}}{|{\varLambda}|^{m-1}}\frac{\mathcal{F}_{{\varLambda},\beta,\mathbf{0}}^{(m)}(\tilde{\rho}_{{\varLambda}}^{*})}{m!}+ |{\varLambda}|S_{|{\varLambda}|}(\tilde{\rho}_{{\varLambda}}^{*})\right\} \\ &\lesssim &\exp\left\{|{\varLambda}|S_{|{\varLambda}|}(\tilde{\rho}_{{\varLambda}}^{*})\right\}\left( 1+\frac{1}{|{\varLambda}|}\right), \end{array} $$
(A.13)

since (A.12) and where \(S_{|{\varLambda }|}(\tilde {\rho }^{*}_{{\varLambda }})\) is a term of order \(\log {\sqrt {|{\varLambda }|}}/|{\varLambda }|\) (see Appendix B in [16]).

The study of \(K(\tilde {\mu }_{{\varLambda }},\tilde {N}^{*})\) is the same as the one done in Lemma 6.3 of [16] where now we consider \(\tilde {N}^{*}\) as center of fluctuations of order 1/2. Hence the conclusion follows from

$$ \begin{array}{@{}rcl@{}} K(\tilde{\mu}_{{\varLambda}},\tilde{N}^{*})\le e^{-|{\varLambda}|S_{|{\varLambda}|}(\tilde{\rho}_{{\varLambda}}^{*})}\left[\sqrt{2\pi D_{{\varLambda},\mathbf{0}}(\tilde{\rho}_{{\varLambda}}^{*})|{\varLambda}|}\left( 1-\frac{C}{\sqrt{|{\varLambda}|}}\right)\right]^{-1} \end{array} $$
(A.14)

and

$$ K(\tilde{\mu}_{{\varLambda}},\tilde{N}^{*})\ge e^{-|{\varLambda}|S_{|{\varLambda}|}(\tilde{\rho}_{{\varLambda}}^{*})}\left[\sqrt{2\pi D_{{\varLambda},\mathbf{0}}(\tilde{\rho}_{{\varLambda}}^{*})|{\varLambda}|}\left( 1+\frac{C}{\sqrt{|{\varLambda}|}}\right)\right]^{-1} $$
(A.15)

for some \(C\in \mathbb {R}^{+}\) independent on Λ. □

Proof of Theorem 4

From (A.1), (A.2) we have

$$ \mathbb{P}^{\mathbf{0}}_{{\varLambda},\mu_0}(A_{\tilde{N}})=J^{C}_{\mu_{0}}(\tilde{N},N^{*})K(\mu_{0},N^{*}). $$
(A.16)

Then using Lemma 6.2 in [16] we have

$$ J^{C}_{\mu_{0}}(\tilde{N},N^{*})\ge\exp\left\{-\frac{(u^{\prime})^{2}|{\varLambda}|^{2\alpha-1}}{2D^{\alpha}_{{\varLambda},\beta,\mathbf{0}}(\rho^{*}_{{\varLambda}})}+|{\varLambda}|S_{|{\varLambda}|}(\rho^{*}_{{\varLambda}})-E_{|{\varLambda}|}(\alpha,u^{\prime},\rho^{*}_{{\varLambda}})\right\} $$
(A.17)

and

$$ J^{C}_{\mu_{0}}(\tilde{N},N^{*})\le \exp\left\{-\frac{(u^{\prime})^{2}|{\varLambda}|^{2\alpha-1}}{2D^{\alpha}_{{\varLambda},\beta,\mathbf{0}}(\rho^{*}_{{\varLambda}})}+|{\varLambda}|S_{|{\varLambda}|}(\rho^{*}_{{\varLambda}})+E_{|{\varLambda}|}(\alpha,u^{\prime},\rho^{*}_{{\varLambda}})\right\} $$
(A.18)

where \(S_{|{\varLambda }|}(\rho ^{*}_{{\varLambda }})\) is a term of order \(\log {\sqrt {|{\varLambda }|}}/|{\varLambda }|\) (see Appendix B in [16]).

The conclusion follows from Lemma 6.3 in [16] which gives us

$$ \begin{array}{@{}rcl@{}} K(\mu_{0},N^{*})\le e^{-|{\varLambda}|S_{|{\varLambda}|}(\rho^{*}_{{\varLambda}})}\left[\sqrt{2\pi D^{\alpha,+}_{{\varLambda},\mathbf{0}}(\rho^{*}_{{\varLambda}})|{\varLambda}|}\left( 1-E_{|{\varLambda}|}(\alpha,u^{\prime},\rho^{*}_{{\varLambda}})\right)\right]^{-1} \end{array} $$
(A.19)

and

$$ K(\mu_{0},N^{*})\ge e^{-|{\varLambda}|S_{|{\varLambda}|}(\rho^{*}_{{\varLambda}})}\left[\sqrt{2\pi D^{\alpha,+}_{{\varLambda},\mathbf{0}}(\rho^{*}_{{\varLambda}})|{\varLambda}|}\left( 1+E_{|{\varLambda}|}(\alpha,u^{\prime},\rho^{*}_{{\varLambda}})\right)\right]^{-1}. $$
(A.20)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scola, G. Cluster Expansion for the Ising Model in the Canonical Ensemble. Math Phys Anal Geom 24, 8 (2021). https://doi.org/10.1007/s11040-021-09377-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11040-021-09377-3

Keywords

Mathematics Subject Classification (2010)

Navigation