Skip to main content
Log in

Lozenge Tilings with Free Boundaries

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study lozenge tilings of a domain with partially free boundary. In particular, we consider a trapezoidal domain (half-hexagon), s.t. the horizontal lozenges on the long side can intersect it anywhere to protrude halfway across. We show that the positions of the horizontal lozenges near the opposite flat vertical boundary have the same joint distribution as the eigenvalues from a Gaussian Unitary Ensemble (the GUE-corners/minors process). We also prove the existence of a limit shape of the height function, which is also a vertically symmetric plane partition. Both behaviors are shown to coincide with those of the corresponding doubled fixed boundary hexagonal domain. We also consider domains where the different sides converge to \({\infty}\) at different rates and recover again the GUE-corners process near the boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baryshnikov Y.: GUEs and queues. Probab. Theory Relat. Fields 119(2), 256–274 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  2. Billinglsey, P.: Probability and measure, 3rd edn. Wiley, New York (1995)

  3. Borodin, A., Bufetov A., Olshanski G.: Limit shapes for growing extreme characters of \({U(\infty)}\) . arXiv:1311.5697

  4. Borodin A., Corwin I., Gorin V.: Stochastic six-vertex model (2014, preprint). arXiv:1407.6729

  5. Bufetov A., Gorin V.: Representations of classical Lie groups and quantized free convolution. arXiv:1311.5780

  6. Ciucu M., Krattenthaler C.: The interaction of a gap with a free boundary in a two dimensional dimer system. Commun. Math. Phys 302, 253–289 (2011)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  7. Cohn, H., Kenyon, R., Propp, J.: A variational principle for domino tilings. J. Am. Math. Soc. 14(2), 297–346 (2001) arXiv:math/0008220

  8. Cohn, H., Larsen, M., Propp, J.: The shape of a typical boxed plane partition. N. Y. J. Math 4, 137–165 (1998) arXiv:math/9801059

  9. Di Francesco Ph., Reshetikhin N.: Asymptotic shapes with free boundaries. Commun. Math. Phys 309(1), 87–121 (2012)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. Forrester P., Nordenstam E.: The anti-symmetric GUE minors process. Mosc. Math. J. 9(4), 749–774 (2009)

    MATH  MathSciNet  Google Scholar 

  11. Fulton, W., Harris, J.: Representation Theory: A First Course. Springer-Verlag, Berlin (1991)

  12. Gorin, V., Panova, G.: Asymptotics of symmetric polynomials with applications to statistical mechanics and representation theory. Ann. Probab. (to appear) (2014)

  13. Johansson K., Nordenstam E.: Eigenvalues of GUE minors. Electron J. Probab. 11(50), 1342–1371 (2006)

    MATH  MathSciNet  Google Scholar 

  14. Kenyon, R.: Lectures on dimers. IAS/Park City Mathematical Series, vol. 16: Statistical Mechanics, AMS (2009) arXiv:0910.3129

  15. Kenyon, R., Okounkov, A.: Limit shapes and Burgers equation. Acta Math. 199(2), 263–302 (2007) arXiv:math-ph/0507007

  16. Kenyon, R., Okounkov, A., Sheffield, S.: Dimers and amoebae. Ann. Math. (2) 163(3), 1019–1056 (2006)

  17. Krattenthaler C.: Identities for classical group characters of nearly rectangular shape. J. Algebra 209(1), 1–64 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  18. Macdonald, I.G.: Symmetric functions and Hall polynomials, 2nd edn. Oxford University Press, Oxford (1999)

  19. Mehta, M.L.: Random matrices. Academic Press, Series: Pure and Applied Mathematics (2004)

  20. Nordenstam, E.: Interlaced particles in tilings and random matrices. Doctoral thesis, KTH (2009)

  21. Nordenstam, E., Young, B.: Domino shuffling on Novak half-hexagons and Aztec half-diamonds. Electron. J. Comb. 18 (2011) arXiv:1103.5054

  22. Novak J.: On the central limit theorem for lozenge tilings of sawtooth domains (preprint)

  23. Yu A., Okounkov N., Reshetikhin Y.: The birth of a random matrix. Mosc. Math. J. 6(3), 553–566 (2006)

    MathSciNet  Google Scholar 

  24. Petrov, L.: Asymptotics of random Lozenge tilings via Gelfand–Tsetlin schemes. Probab. Theory Relat. Fields (2013) arXiv:1202.3901

  25. Proctor R.: Bruhat lattices, plane partition generating functions, and minuscule representations. Eur. J. Comb. 5(4), 331–350 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  26. Sagan, B.E.: The ubiquitous Young tableau. Invariant theory and tableaux (Minneapolis, MN, 1988), IMA Vol. Math. Appl., 19, pp. 262–298. Springer, New York (1990)

  27. Sheffield, S.: Random Surfaces: Large Deviations Principles and Gradient Gibbs Measure Classifications. PhD Thesis, Standford Univ. (2003)

  28. Stanley, R.P.: Enumerative combinatorics, vol. 2. Cambridge Studies in Advanced Mathematics, vol. 62. Cambridge University Press, Cambridge (1999)

  29. Weyl, H.: The Classical Groups: Their Invariants and Representations. Princeton University Press, Princeton (1939)

  30. Zhelobenko, D.P.: Compact Lie Groups and their Representations. Nauka, Moscow (1970) (Russian); English translation: Transl. Math. Monographs 40, A. M. S., Providence, RI, 1973

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Greta Panova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panova, G. Lozenge Tilings with Free Boundaries. Lett Math Phys 105, 1551–1586 (2015). https://doi.org/10.1007/s11005-015-0794-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-015-0794-6

Mathematics Subject Classification

Keywords

Navigation