Skip to main content

Advertisement

Log in

Herbal-based therapeutics for diabetic patients with SARS-Cov-2 infection

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Human SARS Coronavirus-2 (SARS-CoV-2) has infected more than 170 million people worldwide, being responsible for about 3.5 million deaths so far. Despite ongoing investigations, there is still more to understand the mechanism of COVID-19 infection completely. However, it has been evidenced that SARS-CoV-2 can cause Coronavirus disease (COVID-19) notably in diabetic people. Approximately 35% of the patients who died of this disease had diabetes. A growing number of studies have evidenced that hyperglycemia is a significant risk factor for severe SARS-CoV-2 infection and plays a key role in COVID-19 mortality and diabetes comorbidity. The uncontrolled hyperglycemia can produce low-grade inflammation and impaired immunity-mediated cytokine storm that fail multiple organs and sudden death in diabetic patients with SARS-CoV-2 infection. More importantly, SARS-CoV-2 infection and interaction with ACE2 receptors also contribute to pancreatic and metabolic impairment. Thus, using of diabetes medications has been suggested to be beneficial in the better management of diabetic COVID-19 patients. Herbal treatments, as safe and affordable therapeutic agents, have recently attracted a lot of attention in this field. Accordingly, in this review, we intend to have a deep look into the molecular mechanisms of diabetic complications in SARS-CoV-2 infection and explore the therapeutic potentials of herbal medications and natural products in the management of diabetic COVID-19 patients based on recent studies and the existing clinical evidence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

It is not applicable for this study.

References

  1. Guo W et al (2020) Diabetes is a risk factor for the progression and prognosis of COVID-19. Diabetes/Metab Res Rev 36(7):e3319

    Article  CAS  PubMed  Google Scholar 

  2. Imran M et al (2019) Kaempferol: a key emphasis to its anticancer potential. Molecules 24(12):2277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ekor M (2014) The growing use of herbal medicines: issues relating to adverse reactions and challenges in monitoring safety. Front Pharmacol 4:177

    Article  PubMed  PubMed Central  Google Scholar 

  4. Khaerunnisa S et al (2020) Potential inhibitor of COVID-19 main protease (Mpro) from several medicinal plant compounds by molecular docking study. Preprints 2020:2020030226

    Google Scholar 

  5. Modak M et al (2007) Indian herbs and herbal drugs used for the treatment of diabetes. J Clin Biochem Nutr 40(3):163–173

    Article  PubMed  PubMed Central  Google Scholar 

  6. Saeedi P et al (2019) Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the International Diabetes Federation Diabetes Atlas, 9(th) edition. Diabetes Res Clin Pract 157:107843

    Article  PubMed  Google Scholar 

  7. Lima-Martínez MM et al (2021) COVID-19 and diabetes: a bidirectional relationship. Clin Investig Arterioscler 33(3):151–157

    PubMed  Google Scholar 

  8. Al-kuraishy HM et al (2021) COVID-19 in relation to hyperglycemia and diabetes mellitus. Front Cardiovasc Med 8:644095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sacks LJ et al (2020) Considerations for people with diabetes during the Coronavirus Disease (COVID-19) pandemic. Diabetes Res Clin Pract 166:108296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Li Y et al (2021) Follow-up study of pulmonary sequelae in discharged COVID-19 patients with diabetes or secondary hyperglycemia. Eur J Radiol 144:109997

    Article  PubMed  PubMed Central  Google Scholar 

  11. Gęca T et al (2022) Increased risk of COVID-19 in patients with diabetes mellitus—current challenges in pathophysiology, treatment and prevention. Int J Environ Res Public Health 19(11):6555

    Article  PubMed  PubMed Central  Google Scholar 

  12. Fernando SM, Cardinal P, Brindley PG (2017) Hypoxemic respiratory failure from acute respiratory distress syndrome secondary to leptospirosis. Case Rep Crit Care 2017:9062107

    PubMed  PubMed Central  Google Scholar 

  13. Reiterer M et al (2021) Hyperglycemia in acute COVID-19 is characterized by insulin resistance and adipose tissue infectivity by SARS-CoV-2. Cell Metab 33(11):2174-2188.e5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhu L et al (2020) Association of blood glucose control and outcomes in patients with COVID-19 and pre-existing Type 2 diabetes. Cell Metab 31(6):1068-1077.e3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sardu C et al (2020) Outcomes in patients with hyperglycemia affected by COVID-19: can we do more on glycemic control? Diabetes Care 43(7):1408–1415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Barron E et al (2020) Associations of Type 1 and Type 2 diabetes with COVID-19-related mortality in England: a whole-population study. Lancet Diabetes Endocrinol 8(10):813–822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cariou B et al (2020) Phenotypic characteristics and prognosis of inpatients with COVID-19 and diabetes: the CORONADO study. Diabetologia 63(8):1500–1515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Reshad RAI et al (2021) Diabetes in COVID-19 patients: challenges and possible management strategies. Egypt J Bronchol 15(1):53

    Article  Google Scholar 

  19. Borges RC, Hohmann MS, Borghi SM (2021) Dendritic cells in COVID-19 immunopathogenesis: insights for a possible role in determining disease outcome. Int Rev Immunol 40(1–2):108–125

    Article  CAS  PubMed  Google Scholar 

  20. Alhuthali HM et al (2023) Neutrophilia and its correlation with increased inflammatory response in COVID-19 in diabetic and pre-diabetic patients. Eur J Inflamm 21:1–8

    Article  Google Scholar 

  21. Han M et al (2021) Immunological characteristics in Type 2 diabetes mellitus among COVID-19 patients. Front Endocrinol (Lausanne) 12:596518

    Article  PubMed  Google Scholar 

  22. Pechlivani N, Ajjan RA (2018) Thrombosis and vascular inflammation in diabetes: mechanisms and potential therapeutic targets. Front Cardiovasc Med 5:1

    Article  PubMed  PubMed Central  Google Scholar 

  23. Basra R et al (2022) What is the impact of microvascular complications of diabetes on severe COVID-19? Microvasc Res 140:104310

    Article  CAS  PubMed  Google Scholar 

  24. AlugantiNarasimhulu C, Singla DK (2022) Mechanisms of COVID-19 pathogenesis in diabetes. Am J Physiol Heart Circ Physiol 323(3):H403–H420

    Article  Google Scholar 

  25. Pennathur S, Heinecke JW (2007) Oxidative stress and endothelial dysfunction in vascular disease. Curr Diab Rep 7(4):257–264

    Article  CAS  PubMed  Google Scholar 

  26. Burgess JL et al (2021) Diabetic wound-healing science. Medicina 57(10):1072

    Article  PubMed  PubMed Central  Google Scholar 

  27. Oropallo A et al (2021) Wound care during the COVID-19 pandemic: improving outcomes through the integration of telemedicine. J Wound Care 30(Sup2):S12–S17

    Article  PubMed  Google Scholar 

  28. Cheng Y et al (2020) Kidney impairment is associated with in-hospital death of COVID-19 patients. medRxiv 2020.02.18.20023242

  29. Khalili S et al (2021) Prevalence, risk factors and outcomes associated with acute kidney injury in patients hospitalized for COVID-19: a comparative study between diabetic and nondiabetic patients. J Diabetes Res 2021:6666086

    Article  PubMed  PubMed Central  Google Scholar 

  30. D’Marco L et al (2020) Diabetic kidney disease and COVID-19: the crash of two pandemics. Front Med (Lausanne) 7:199

    Article  ADS  PubMed  Google Scholar 

  31. Abdulaziz Al-Muhanna F et al (2022) Impact of COVID-19 on kidney of diabetic patients. Medicina (Kaunas) 58(5):644

    Article  PubMed  Google Scholar 

  32. Vellanki P, Umpierrez GE (2021) Diabetic ketoacidosis risk during the COVID-19 pandemic. Lancet Diabetes Endocrinol 9(10):643–644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. de Sá-Ferreira CO et al (2022) Diabetic ketoacidosis and COVID-19: what have we learned so far? Am J Physiol Endocrinol Metab 322(1):E44–E53

    Article  PubMed  Google Scholar 

  34. Hajifathalian K et al (2020) Obesity is associated with worse outcomes in COVID-19: analysis of early data from New York City. Obesity (Silver Spring) 28(9):1606–1612

    Article  CAS  PubMed  Google Scholar 

  35. Kaur I et al (2022) A motley of possible therapies of the COVID-19: reminiscing the origin of the pandemic. Environ Sci Pollut Res Int 29(45):67685–67703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bailey CJ, Gwilt M (2022) Diabetes, metformin and the clinical course of COVID-19: outcomes, mechanisms and suggestions on the therapeutic use of metformin. Front Pharmacol 13:784459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Khan F et al (2023) Side effects of COVID-19 vaccines among diabetic subjects and healthy individuals. Cureus 15(3):e36005

    PubMed  PubMed Central  Google Scholar 

  38. Kwan AC et al (2023) Association of COVID-19 vaccination with risk for incident diabetes after COVID-19 infection. JAMA Netw Open 6(2):e2255965

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kim HJ et al (2023) Safety of COVID-19 vaccines among patients with Type 2 diabetes mellitus: real-world data analysis. Diabetes Metab J 47(3):356–365

    Article  PubMed  Google Scholar 

  40. Lin X et al (2020) Global, regional, and national burden and trend of diabetes in 195 countries and territories: an analysis from 1990 to 2025. Sci Rep 10(1):14790

    Article  ADS  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sathish T et al (2021) Potential metabolic and inflammatory pathways between COVID-19 and new-onset diabetes. Diabetes Metab 47(2):101204

    Article  CAS  PubMed  Google Scholar 

  42. Lim S et al (2021) COVID-19 and diabetes mellitus: from pathophysiology to clinical management. Nat Rev Endocrinol 17(1):11–30

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  43. Wu KCH et al (2022) Shared genetic mechanism between type 2 diabetes and COVID-19 using pathway-based association analysis. Front Genet 13:1063519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pouremamali A et al (2022) Understanding the pivotal roles of ACE2 in SARS-CoV-2 infection: from structure/function to therapeutic implication. Egypt J Med Hum Genet 23(1):1–10

    Article  Google Scholar 

  45. D’Onofrio N et al (2021) Glycated ACE2 receptor in diabetes: open door for SARS-CoV-2 entry in cardiomyocyte. Cardiovasc Diabetol 20(1):99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Pinchera B et al (2022) Diabetes and COVID-19: the potential role of mTOR. Diabetes Res Clin Pract 186:109813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Calvisi SL et al (2021) Thromboembolism risk among patients with diabetes/stress hyperglycemia and COVID-19. Metabolism 123:154845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Beyerstedt S, Casaro EB, Rangel B (2021) COVID-19: angiotensin-converting enzyme 2 (ACE2) expression and tissue susceptibility to SARS-CoV-2 infection. Eur J Clin Microbiol Infect Dis 40(5):905–919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Elshafei A et al (2021) RAAS, ACE2 and COVID-19; a mechanistic review. Saudi J Biol Sci 28(11):6465–6470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Memon B, Abdelalim EM (2021) ACE2 function in the pancreatic islet: implications for relationship between SARS-CoV-2 and diabetes. Acta Physiol (Oxf) 233(4):e13733

    Article  CAS  PubMed  Google Scholar 

  51. Varghese E et al (2021) Diabetes and coronavirus (SARS-CoV-2): molecular mechanism of Metformin intervention and the scientific basis of drug repurposing. PLoS Pathog 17(6):e1009634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Berbudi A et al (2020) Type 2 diabetes and its impact on the immune system. Curr Diabetes Rev 16(5):442–449

    PubMed  PubMed Central  Google Scholar 

  53. Dallavalasa S et al (2023) COVID-19: diabetes perspective—pathophysiology and management. Pathogens 12(2):184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Shin J et al (2022) SARS-CoV-2 infection impairs the insulin/IGF signaling pathway in the lung, liver, adipose tissue, and pancreatic cells via IRF1. Metabolism 133:155236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Karam BS et al (2021) mTOR inhibition in COVID-19: a commentary and review of efficacy in RNA viruses. J Med Virol 93(4):1843–1846

    Article  CAS  PubMed  Google Scholar 

  56. Ganesan SK et al (2020) Increased mortality of COVID-19 infected diabetes patients: role of furin proteases. Int J Obes 44(12):2486–2488

    Article  CAS  Google Scholar 

  57. Brouwers B et al (2020) Furin controls β cell function via mTORC1 signaling. bioRxiv 2020.04.09.027839

  58. Kurdi A, Martinet W, De Meyer GR (2018) mTOR inhibition and cardiovascular diseases: dyslipidemia and atherosclerosis. Transplantation 102(2S):S44–S46

    Article  CAS  PubMed  Google Scholar 

  59. Mooradian AD (2009) Dyslipidemia in type 2 diabetes mellitus. Nat Rev Endocrinol 5(3):150–159

    Article  CAS  Google Scholar 

  60. Hariyanto TI, Kurniawan A (2020) Dyslipidemia is associated with severe coronavirus disease 2019 (COVID-19) infection. Diabetes Metab Syndr Clin Res Rev 14(5):1463–1465

    Article  Google Scholar 

  61. Hashemi SMA et al (2021) Human gene polymorphisms and their possible impact on the clinical outcome of SARS-CoV-2 infection. Arch Virol 166:2089–2108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Sen S et al (2021) Diabetes mellitus and COVID-19: understanding the association in light of current evidence. World J Clin Cases 9(28):8327

    Article  PubMed  PubMed Central  Google Scholar 

  63. Sayed S (2021) COVID-19 and diabetes; possible role of polymorphism and rise of telemedicine. Prim Care Diabetes 15(1):4–9

    Article  CAS  PubMed  Google Scholar 

  64. Faridzadeh A et al (2022) The role of ACE1 I/D and ACE2 polymorphism in the outcome of Iranian COVID-19 patients: a case–control study. Front Genet 13:955965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Balmeh N et al (2020) Predicted therapeutic targets for COVID-19 disease by inhibiting SARS-CoV-2 and its related receptors. Inform Med Unlocked 20:100407

    Article  PubMed  PubMed Central  Google Scholar 

  66. Yusuf AP et al (2022) Herbal medications and natural products for patients with covid-19 and diabetes mellitus: potentials and challenges. Phytomed Plus 2(3):100280

    Article  PubMed  PubMed Central  Google Scholar 

  67. Chowdhury P (2021) In silico investigation of phytoconstituents from Indian medicinal herb ‘Tinospora cordifolia (giloy)’ against SARS-CoV-2 (COVID-19) by molecular dynamics approach. J Biomol Struct Dyn 39(17):6792–6809

    Article  CAS  PubMed  Google Scholar 

  68. Panchamoorthy R, Prabhakar P (2022) Mucormycosis, a post-COVID infection: possible adjunctive herbal therapeutics for the realigning of impaired immune-metabolism in diabetic subjects. Herba Pol 68(2):86–98

    Article  Google Scholar 

  69. Aucoin M et al (2021) A systematic review on the effects of Echinacea supplementation on cytokine levels: is there a role in COVID-19? Metab Open 11:100115

    Article  CAS  Google Scholar 

  70. Aucoin M et al (2020) The effect of Echinacea spp. on the prevention or treatment of COVID-19 and other respiratory tract infections in humans: a rapid review. Adv Integr Med 7(4):203–217

    Article  PubMed  PubMed Central  Google Scholar 

  71. Delorme D, Miller SC (2005) Dietary consumption of Echinacea by mice afflicted with autoimmune (Type I) diabetes: effect of consuming the herb on hemopoietic and immune cell dynamics. Autoimmunity 38(6):453–461

    Article  PubMed  Google Scholar 

  72. Behl T, Kotwani A (2016) Proposed mechanisms of Terminalia catappa in hyperglycaemia and associated diabetic complications. J Pharm Pharmacol 69(2):123–134

    Article  PubMed  Google Scholar 

  73. Akhtar MT et al (2016) Anti-diabetic activity and metabolic changes induced by Andrographis paniculata plant extract in obese diabetic rats. Molecules 21(8):1026

    Article  PubMed  PubMed Central  Google Scholar 

  74. Siripongboonsitti T et al (2023) Efficacy of Andrographis paniculata extract treatment in mild to moderate COVID-19 patients being treated with favipiravir: a double-blind, randomized, placebo-controlled study (APFaVi trial). Phytomedicine 119:155018

    Article  CAS  PubMed  Google Scholar 

  75. Kashyap S et al (2021) Uncurtaining the effect of COVID-19 in diabetes mellitus: a complex clinical management approach. Environ Sci Pollut Res 28(27):35429–35436

    Article  CAS  Google Scholar 

  76. Silveira D et al (2020) COVID-19: is there evidence for the use of herbal medicines as adjuvant symptomatic therapy? Front Pharmacol 11:581840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Bafandeh S et al (2023) Natural products as a potential source of promising therapeutics for COVID-19 and viral diseases. Evid Based Complement Altern Med 2023:5525165

    Article  Google Scholar 

  78. Sharma N et al (2022) Therapeutic options for the SARS-CoV-2 virus: is there a key in herbal medicine? Nat Prod Commun 17(9):1934578X221126303

    CAS  Google Scholar 

  79. Gomez CR et al (2021) Therapeutic intervention of COVID-19 by natural products: a population-specific survey directed approach. Molecules 26(4):1191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors sincerely appreciate the Saveh and Urmia University of Medical Science that support us in this review.

Funding

In the current study, there was no funding source to be mentioned.

Author information

Authors and Affiliations

Authors

Contributions

Concepts, Literature search: Yousef Rasmi, Elmira Roshani Asl, Manuscript preparation, Manuscript editing, Manuscript review: Yousef Rasmi, Elmira Roshani Asl, Alin da Silva, Ighil di Bari, Shah Faisal, Munima Haque, Preparation of figures and tables: Ighil di Bari, Munima Haque, Shah Faisal, Final Approval of the version to be published: Yousef Rasmi, Elmira Roshani Asl, Alin da Silva.

Corresponding authors

Correspondence to Aline da Silva or Elmira Roshani Asl.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

The study was approved by the Ethical Committee of the Saveh University of Medical Sciences, Saveh, Iran.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rasmi, Y., di Bari, I., Faisal, S. et al. Herbal-based therapeutics for diabetic patients with SARS-Cov-2 infection. Mol Biol Rep 51, 316 (2024). https://doi.org/10.1007/s11033-024-09291-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11033-024-09291-1

Keywords

Navigation