Skip to main content
Log in

Early insights into the role of Exoc6B associated with spondyloepimetaphyseal dysplasia with joint laxity type 3 in primary ciliogenesis and chondrogenic differentiation in vitro

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Spondyloepimetaphyseal dysplasia with joint laxity type 3 (SEMDJL3) is a rare skeletal dysplasia associated with EXOC6B, a component of the exocyst complex, involved in vesicle tethering and exocytosis at the plasma membrane. So far, EXOC6B and the pathomechanisms underlying SEMDJL3 remain obscure.

Methods and results

Exoc6b was detected largely at the perinuclear regions and the primary cilia base in ATDC5 prechondrocytes. Its shRNA lentiviral knockdown impeded primary ciliogenesis. In Exoc6b silenced prechondrocytes, Hedgehog signaling was attenuated, including when stimulated with Smoothened agonist. Exoc6b knockdown deregulated the mRNA and protein levels of Col2a1, a marker of chondrocyte proliferation at 7- and 14-days following differentiation. It led to the upregulation of Ihh another marker of proliferative chondrocytes. The levels of Col10a1, a marker of chondrocyte hypertrophy was enhanced at 14 days of differentiation. Congruently, Axin2, a canonical Wnt pathway modulator that inhibits chondrocyte hypertrophy was repressed. The expression of Mmp13 and Adamts4 that are terminal chondrocyte hypertrophy markers involved in extracellular matrix (ECM) remodelling were downregulated at 7 and 14 days of chondrogenesis. Bglap that encodes for the most abundant non-collagenous bone matrix constituent and promotes ECM calcification was suppressed at 14 days of chondrocyte differentiation. ECM mineralization was assessed by Alizarin Red staining. Gene expression and ciliogenesis were investigated by reverse transcription quantitative real-time PCR, immunoblotting, and immunocytochemistry.

Conclusions

These findings provide initial insights into the potential role of Exoc6b in primary ciliogenesis and chondrogenic differentiation, contributing towards a preliminary understanding of the molecular pathomechanisms underlying SEMDJL3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data presented in this study are available upon request from the corresponding author.

Abbreviations

SEMDJL3:

Spondyloepimetaphyseal dysplasia with joint laxity, type 3

MTC:

Multisubunit tethering complexes

SNARE:

N-Ethylmaleimide-sensitive factor attachment protein receptors

GTPases:

Guanosine triphosphatases

CATCHR:

Complexes associated with tethering containing helical rods

ERK1/2:

Extracellular signal-regulated kinase 1 and 2

PI(4,5)P2 :

Phosphatidylinositol 4,5 biphosphate

IFT:

Intraflagellar transport

KD:

Knockdown

SAG:

Smoothened agonist

Col2a1:

Type II collagen alpha 1

Hh:

Hedgehog

Ihh:

Indian hedgehog

Col10a1:

Type X collagen alpha 1

Mmp13:

Matrix metallopeptidase 13

Adamts4:

ADAM metallopeptidase with thrombospondin type 1 Motif 4

Bglap:

Bone-gamma carboxyglutamate protein

DMEM:

Dulbecco’s modified eagle medium

FBS:

Fetal bovine serum

PFA:

Paraformaldehyde

DAPI:

4′,6-Diamidino-2-phenylindole

PBS:

Phosphate-buffered saline

shRNA:

Short-hairpin RNA

PCR:

Polymerase chain reaction

RT-PCR:

Reverse transcription PCR

RT-qPCR:

Reverse transcription quantitative real time PCR

SDS-PAGE:

Sodium dodecyl sulfate–polyacrylamide gel electrophoresis

RT:

Room temperature

SEM:

Standard error of the mean

ANOVA:

Analysis of variance

ns:

Non-significant

References

  1. Lurick A, Kummel D, Ungermann C (2018) Multisubunit tethers in membrane fusion. Curr Biol 28(8):R417–R420

    Article  PubMed  Google Scholar 

  2. Wu B, Guo W (2015) The exocyst at a glance. J Cell Sci 128(16):2957–2964

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Grindstaff KK et al (1998) Section 6/8 complex is recruited to cell-cell contacts and specifies transport vesicle delivery to the basal-lateral membrane in epithelial cells. Cell 93(5):731–740

    Article  CAS  PubMed  Google Scholar 

  4. Prigent M et al (2003) ARF6 controls post-endocytic recycling through its downstream exocyst complex effector. J Cell Biol 163(5):1111–1121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. He B et al (2007) Exo70 interacts with phospholipids and mediates the targeting of the exocyst to the plasma membrane. EMBO J 26(18):4053–4065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhang X et al (2008) Membrane association and functional regulation of Sec3 by phospholipids and Cdc42. J Cell Biol 180(1):145–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Guo W et al (1999) The exocyst is an effector for Sec4p, targeting secretory vesicles to sites of exocytosis. EMBO J 18(4):1071–1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ahmed SM et al (2018) Exocyst dynamics during vesicle tethering and fusion. Nat Commun 9(1):5140

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  9. Gromley A et al (2005) Centriolin anchoring of exocyst and SNARE complexes at the midbody is required for secretory-vesicle-mediated abscission. Cell 123(1):75–87

    Article  CAS  PubMed  Google Scholar 

  10. Hehnly H et al (2012) The centrosome regulates the Rab11- dependent recycling endosome pathway at appendages of the mother centriole. Curr Biol 22(20):1944–1950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Schmidt KN et al (2012) Cep164 mediates vesicular docking to the mother centriole during early steps of ciliogenesis. J Cell Biol 199(7):1083–1101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Knodler A et al (2010) Coordination of Rab8 and Rab11 in primary ciliogenesis. Proc Natl Acad Sci U S A 107(14):6346–6351

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  13. Park TJ et al (2008) Dishevelled controls apical docking and planar polarization of basal bodies in ciliated epithelial cells. Nat Genet 40(7):871–879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Girisha KM et al (2016) A novel multiple joint dislocation syndrome associated with a homozygous nonsense variant in the EXOC6B gene. Eur J Hum Genet 24(8):1206–1210

    Article  CAS  PubMed  Google Scholar 

  15. Campos-Xavier B et al (2018) Confirmation of spondylo-epi-metaphyseal dysplasia with joint laxity, EXOC6B type. Am J Med Genet A 176(12):2934–2935

    Article  PubMed  Google Scholar 

  16. Simsek-Kiper PO et al (2022) Biallelic loss-of-function variants in EXOC6B are associated with impaired primary ciliogenesis and cause spondylo-epi-metaphyseal dysplasia with joint laxity type 3. Hum Mutat 43:2116

    Article  CAS  PubMed  Google Scholar 

  17. Zhang XM et al (2004) Section 15 is an effector for the Rab11 GTPase in mammalian cells. J Biol Chem 279(41):43027–43034

    Article  CAS  PubMed  Google Scholar 

  18. Wu S et al (2005) Section 15 interacts with Rab11 via a novel domain and affects Rab11 localization in vivo. Nat Struct Mol Biol 12(10):879–885

    Article  CAS  PubMed  Google Scholar 

  19. Jin Y et al (2011) Myosin V transports secretory vesicles via a Rab GTPase cascade and interaction with the exocyst complex. Dev Cell 21(6):1156–1170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Feng S et al (2012) A Rab8 guanine nucleotide exchange factor-effector interaction network regulates primary ciliogenesis. J Biol Chem 287(19):15602–15609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Upadhyai P, Guleria VS, Udupa P (2020) Characterization of primary cilia features reveal cell-type specific variability in in vitro models of osteogenic and chondrogenic differentiation. PeerJ 8:e9799

    Article  PubMed  PubMed Central  Google Scholar 

  22. Quadri N, Upadhyai P (2023) Primary cilia in skeletal development and disease. Exp Cell Res 431(1):113751

    Article  CAS  PubMed  Google Scholar 

  23. Zhao Q et al (1997) Parallel expression of Sox9 and Col2a1 in cells undergoing chondrogenesis. Dev Dyn 209(4):377–386

    Article  CAS  PubMed  Google Scholar 

  24. St-Jacques B, Hammerschmidt M, McMahon AP (1999) Indian hedgehog signaling regulates proliferation and differentiation of chondrocytes and is essential for bone formation. Genes Dev 13(16):2072–2086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lu Y et al (2014) Col10a1 gene expression and chondrocyte hypertrophy during skeletal development and disease. Front Biol 9(3):195–204

    Article  CAS  ADS  Google Scholar 

  26. Dao DY et al (2010) Axin2 regulates chondrocyte maturation and axial skeletal development. J Orthop Res 28(1):89–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Inada M et al (2004) Critical roles for collagenase-3 (Mmp13) in development of growth plate cartilage and in endochondral ossification. Proc Natl Acad Sci U S A 101(49):17192–17197

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  28. Djouad F et al (2007) Microenvironmental changes during differentiation of mesenchymal stem cells towards chondrocytes. Arthritis Res Ther 9(2):R33

    Article  PubMed  PubMed Central  Google Scholar 

  29. Han Y et al (2016) Leptin induces osteocalcin expression in ATDC5 cells through activation of the MAPK-ERK1/2 signaling pathway. Oncotarget 7(39):64021–64029

    Article  PubMed  PubMed Central  Google Scholar 

  30. Wehrle A et al (2018) A common pathomechanism in GMAP-210- and LBR-related diseases. JCI Insight 3(23):e121150

    Article  PubMed  PubMed Central  Google Scholar 

  31. Wehrle A et al (2019) Hypomorphic mutations of TRIP11 cause odontochondrodysplasia. JCI Insight 4(3):e124701

    Article  PubMed  PubMed Central  Google Scholar 

  32. Yeaman C et al (2001) Sec6/8 complexes on trans-golgi network and plasma membrane regulate late stages of exocytosis in mammalian cells. J Cell Biol 155(4):593–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Shin DM et al (2000) The mammalian Sect6/8 complex interacts with ca(2+) signaling complexes and regulates their activity. J Cell Biol 150(5):1101–1112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rogers KK et al (2004) The exocyst localizes to the primary cilium in MDCK cells. Biochem Biophys Res Commun 319(1):138–143

    Article  CAS  PubMed  Google Scholar 

  35. Seixas C et al (2016) Arl13b and the exocyst interact synergistically in ciliogenesis. Mol Biol Cell 27(2):308–320

    Article  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zuo X et al (2019) The exocyst acting through the primary cilium is necessary for renal ciliogenesis, cystogenesis, and tubulogenesis. J Biol Chem 294(17):6710–6718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zuo X, Guo W, Lipschutz JH (2009) The exocyst protein Sec10 is necessary for primary ciliogenesis and cystogenesis in vitro. Mol Biol Cell 20(10):2522–2529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Fogelgren B et al (2011) The exocyst protein Sec10 interacts with polycystin-2 and knockdown causes PKD-phenotypes. PLoS Genet 7(4):e1001361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang C, Yuan X, Yang S (2013) IFT80 is essential for chondrocyte differentiation by regulating hedgehog and wnt signaling pathways. Exp Cell Res 319(5):623–632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Baek J-I et al (2016) Dynamin binding protein (Tuba) deficiency inhibits ciliogenesis and nephrogenesis in vitro and in vivo*. J Biol Chem 291(16):8632–8643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zuo X, Fogelgren B, Lipschutz JH (2011) The small GTPase Cdc42 is necessary for primary ciliogenesis in renal tubular epithelial cells*. J Biol Chem 286(25):22469–22477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Collins I, Wann AKT (2020) Regulation of the extracellular matrix by ciliary machinery. Cells 9(2):1

    Google Scholar 

  43. Pereira C et al (2023) The exocyst complex is an essential component of the mammalian constitutive secretory pathway. J Cell Biol 222(5):e202205137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yamaguchi H et al (2022) Temporospatial regulation of intraflagellar transport is required for the endochondral ossification in mice. Dev Biol 482:91–100

    Article  CAS  PubMed  Google Scholar 

  45. Haycraft CJ et al (2007) Intraflagellar transport is essential for endochondral bone formation. Development 134(2):307–316

    Article  CAS  PubMed  Google Scholar 

  46. McGlashan SR et al (2007) Articular cartilage and growth plate defects are associated with chondrocyte cytoskeletal abnormalities in Tg737orpk mice lacking the primary cilia protein polaris. Matrix Biol 26(4):234–246

    Article  CAS  PubMed  Google Scholar 

  47. Song B et al (2007) Development of the post-natal growth plate requires intraflagellar transport proteins. Dev Biol 305(1):202–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tummala P, Arnsdorf EJ, Jacobs CR (2010) The role of primary cilia in mesenchymal stem cell differentiation: a pivotal switch in guiding lineage commitment. Cell Mol Bioeng 3(3):207–212

    Article  CAS  PubMed  Google Scholar 

  49. Lian C et al (2019) Collagen type II suppresses articular chondrocyte hypertrophy and osteoarthritis progression by promoting integrin beta1-SMAD1 interaction. Bone Res 7:8

    Article  PubMed  PubMed Central  Google Scholar 

  50. Edfors F et al (2016) Gene-specific correlation of RNA and protein levels in human cells and tissues. Mol Syst Biol 12(10):883

    Article  PubMed  PubMed Central  Google Scholar 

  51. Liu Y, Beyer A, Aebersold R (2016) On the dependency of cellular protein levels on mRNA abundance. Cell 165(3):535–550

    Article  CAS  PubMed  Google Scholar 

  52. Dong YF et al (2006) Wnt induction of chondrocyte hypertrophy through the Runx2 transcription factor. J Cell Physiol 208(1):77–86

    Article  CAS  PubMed  Google Scholar 

  53. He X (2008) Cilia put a brake on wnt signalling. Nat Cell Biol 10(1):11–13

    Article  CAS  PubMed  Google Scholar 

  54. Martin-Urdiroz M et al (2016) The exocyst complex in health and disease. Front Cell Dev Biol 4:24

    Article  PubMed  PubMed Central  Google Scholar 

  55. Lim JE et al (2005) A mutation in Sec15l1 causes anemia in hemoglobin deficit (hbd) mice. Nat Genet 37(11):1270–1273

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. Uwe Kornak, Charité—Universitätsmedizin Berlin for ATDC5 cells.

Funding

This work was supported by an Early Career Research award (ECR/2016/001475) for the project entitled ‘Investigating the role of Ift52 and Exoc6B in human biology and disease using cell culture and Drosophila systems’ from the Science and Engineering Research Board, Department of Science and Technology, Government of India and the project entitled ‘Investigating the crosstalk between primary cilia and autophagy in chondrogenesis and its modulation by Fibroblast growth factor (FGF) signaling in FGFR3 related skeletal dysplasias in vitro’ (2020 -107/CMB/ADHOC-BMS) funded by the Indian Council for Medical Research, Government of India to Priyanka Upadhyai.

Author information

Authors and Affiliations

Authors

Contributions

PU: Conceptulization, Methodology, Resources, Validation, Formal Analysis, Visualization, Writing-original draft, Writing-review and editing, Supervision, Funding acquisition, Project administration. VSG: Methodology, Investigation, Validation, Visualization, Data curation, Formal Analysis, Writing-original draft. NQ: Methodology, Investigation, Validation, Visualization, Data curation, Formal Analysis, Writing-review and editing. KP: Investigation, Validation, Visualization. RD: Formal Analysis, Validation, Visualization, Writing-review and editing. All authors have read and agreed to the submitted version of the manuscript.

Corresponding author

Correspondence to Priyanka Upadhyai.

Ethics declarations

Conflict of interest

The authors declare they have no competing interests.

Research involving human and animal rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 23543 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guleria, V.S., Quadri, N., Prasad, K. et al. Early insights into the role of Exoc6B associated with spondyloepimetaphyseal dysplasia with joint laxity type 3 in primary ciliogenesis and chondrogenic differentiation in vitro. Mol Biol Rep 51, 274 (2024). https://doi.org/10.1007/s11033-023-09114-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11033-023-09114-9

Keywords

Navigation