Skip to main content
Log in

Screening and identification of photoresponse factors in kiwifruit (Actinidia arguta) development

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Light is essential for kiwifruit development, in which photoresponse factors contributes greatly to the quality formation. ‘Light sensitive hypocotyls, also known as light-dependent short hypocotyls’ (LSH) gene family can participate in fruit development as photoresponse factor. However, the key LSH gene that determine kiwifruit development remains unclear. This study aim to screen and identify the key gene AaLSH9 in A. arguta.

Materials and methods

Genome-wide identification of the LSH gene family was used to analyse LSH genes in kiwifruit. Homologous cloning was used to confirm the sequence of candidate LSH genes. qRT-PCR and cluster analysis of expression pattern were used to screen the key AaLSH9 gene. Subcellular localization of AaLSH9 in tobacco leaves and overexpression of AaLSH9 in Arabidopsis thaliana hy5 mutant plants were used to define the acting place in cell and identify molecular function, respectively.

Results

We identified 15 LSH genes, which were divided into two sub-families namely A and B. Domain analysis of A and B showed that they contained different domain organizations, which possibly played key roles in the evolution process. Three LSH genes, AaLSH2, AaLSH9, and AaLSH11, were successfully isolated from Actinidia arguta. The expression pattern and cluster analysis of these three AaLSH genes suggested AaLSH9 might be a key photoresponse gene participating in fruit development in A. arguta. Subcellular localization showed AaLSH9 protein was located in the nucleus. The overexpression of AaLSH9 gene in Arabidopsis thaliana hy5 mutant plants partially complemented the long hypocotyls of hy5 mutant, implying AaLSH9 played a key role as photoresponse factor in cells. In addition, the seed coat color of A. thaliana over-expressing AaLSH9 became lighter than the wide type A.thaliana. Finally, AaCOP1 was confirmed as photoresponse factor to participate in developmental process by stable transgenic A. thaliana.

Conclusions

AaLSH9 can be involved in kiwifruit (A. arguta) development as key photoresponse factor. Our results not only identified the photoresponse factors AaLSH9 and AaCOP1 but also provided insights into their key role in fruit quality improvement in the process of light response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets utilized and/or analyzed in the present study are available from the corresponding author on reasonable request.

References

  1. Huang HW, Ferguson AR (2007) Actinidia in China: natural diversity, phylogeographical evolution, interspecific gene flow and kiwifruit cultivar improvement. Acta Hortic 753:31–40. https://doi.org/10.17660/ActaHortic.2007.753.1

    Article  Google Scholar 

  2. Huang HW (2013) Actinidia genus: classification, resource, domestication, cultivation. Science Press. (In Chinese).

    Google Scholar 

  3. Zhang L, Li ZZ, Wang YC, Jiang ZW, Wang SM, Huang HW (2010) Vitamin C, flower color and ploidy variationof hybrids from a ploidy-unbalanced Actinidia interspecific cross and SSR characterization. Euphytica 175(1):133–143. https://doi.org/10.1007/s10681-010-0194-z

    Article  CAS  Google Scholar 

  4. Li YK, Fang JB, Qi XJ, Lin MM, Zhong YP, Sun LM (2018) A key structural gene, AaLDOX, is involved in anthocyanin biosynthesis in all red-fleshed kiwifruit (Actinidia arguta) based on transcriptome analysis. Gene 648:31–41. https://doi.org/10.1016/j.gene.2018.01.022

    Article  CAS  PubMed  Google Scholar 

  5. Qi XJ, Han LX, Li M, Zhao GR, Li YH, Fang JB (2011) A new all-red kiwifruit cultivar ‘Rubystar’. Acta Horticulturae Sinica 38:601–602 (in Chinese)

    Google Scholar 

  6. Li YK, Qi XJ, Cui W, Lin MM, Qiao CK, Zhong YP, Fang JB, Hu CG (2021) Restraint of bagging on fruit skin coloration in on-tree kiwifruit (Actinidia arguta). J Plant Growth Regul 40:603–616. https://doi.org/10.1007/s00344-020-10124-1

    Article  CAS  Google Scholar 

  7. Zoratti L, Sarala M, Carvalho E, Karppinen K, Martens S, Giongo L, Häggman H, Jaakola L (2014) Monochromatic light increases anthocyanin content during fruit development in bilberry. BMC Plant Biol 14:377. https://doi.org/10.1186/s12870-014-0377-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Muñoz P, Munné-Bosch S (2018) Photo-oxidative stress during leaf, flower and fruit development. Plant Physiol 176(2):1004–1014. https://doi.org/10.1104/pp.17.01127

    Article  CAS  PubMed  Google Scholar 

  9. Wang Q, Zuo Z, Wang X, Liu Q, Gu L, Oka Y, Lin C (2018) Beyond the photocycle-how cryptochromes regulate photoresponses in plants? Curr Opin Plant Biol. 45(pt A. 120–126. doi: 10.1016/j.pbi.2018.05.014.

    Article  CAS  Google Scholar 

  10. Wang Q, Lin C (2020) Mechanisms of cryptochrome-mediated photoresponses in plants. Annu Rev Plant Biol 71:103–129. https://doi.org/10.1146/annurev-arplant-050718-100300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. An JP, Qu FJ, Yao JF, Wang XN, You CX, Wang XF, Hao YJ (2017) The bZIP transcription factor MdHY5 regulates anthocyanin accumulation and nitrate assimilation in apple. Hortic Res 4:17023. https://doi.org/10.1038/hortres.2017.23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bai S, Tao R, Tang Y, Yin L, Ma Y, Ni J, Yan X, Yang Q, Wu Z, Zeng Y, Teng Y (2019) BBX16, a B-box protein, positively regulates light-induced anthocyanin accumulation by activating MYB10 in red pear. Plant Biotechnol J 17(10):1985–1997. https://doi.org/10.1111/pbi.13114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Liu W, Wang Y, Yu L, Jiang H, Guo Z, Xu H, Jiang S, Fang H, Zhang J, Su M, Zhang Z, Chen X, Chen X, Wang N (2019) MdWRKY11 participates in anthocyanin accumulation in red-fleshed apples by affecting MYB transcription factors and the photoresponse factor MdHY5. J Agric Food Chem 67(32):8783–8793. https://doi.org/10.1021/acs.jafc.9b02920

    Article  CAS  PubMed  Google Scholar 

  14. An JP, Wang XF, Espley RV, Lin-Wang K, Bi SQ, You CX, Hao YJ (2020) An apple B-box protein MdBBX37 modulates anthocyanin biosynthesis and hypocotyl elongation synergistically with MdMYBs and MdHY5. Plant Cell Physiol 61(1):130–143. https://doi.org/10.1093/pcp/pcz185

    Article  CAS  PubMed  Google Scholar 

  15. Li Y, Xu P, Chen G, Wu J, Liu Z, Lian H (2020) FvbHLH9 functions as a positive regulator of anthocyanin biosynthesis by forming a HY5-bHLH9 transcription complex in strawberry fruits. Plant Cell Physiol 61(4):826–837. https://doi.org/10.1093/pcp/pcaa010

    Article  CAS  PubMed  Google Scholar 

  16. Liu HN, Shu Q, Lin-Wang K, Allan AC, Espley RV, Su J, Pei MS, Wu J (2021) The PyPIF5-PymiR156a-PySPL9-PyMYB114/MYB10 module regulates light-induced anthocyanin biosynthesis in red pear. Mol Hortic 1:14. https://doi.org/10.1186/s43897-021-00018-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ma H, Yang T, Li Y, Zhang J, Wu T, Song T, Yao Y, Tian J (2021) The long noncoding RNA MdLNC499 bridges MdWRKY1 and MdERF109 function to regulate early-stage light-induced anthocyanin accumulation in apple fruit. Plant Cell 33(10):3309–3330. https://doi.org/10.1093/plcell/koab188

    Article  PubMed  PubMed Central  Google Scholar 

  18. Yu M, Man Y, Wang Y (2019) Light- and temperature-induced expression of an R2R3-MYB gene regulates anthocyanin biosynthesis in red-fleshed kiwifruit. Int J Mol Sci 20(20):5228. https://doi.org/10.3390/ijms20205228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li YK, Cui W, Qi XJ, Lin MM, Qiao CK, Zhong YP, Hu CG, Fang JB (2020) MicroRNA858 negatively regulates anthocyanin biosynthesis by repressing AaMYBC1 expression in kiwifruit (Actinidia arguta). Plant Sci 296:110476. https://doi.org/10.1016/j.plantsci.2020.110476

    Article  CAS  PubMed  Google Scholar 

  20. Zhao L, Nakazawa M, Takase T, Manabe K, Kobayashi M, Seki M, Shinozaki K, Matsui M (2004) Overexpression of LSH1, a member of an uncharacterised gene family, causes enhanced light regulation of seedling development. Plant J 37(5):694–706. https://doi.org/10.1111/j.1365-313x.2003.01993.x

    Article  CAS  PubMed  Google Scholar 

  21. Yoshida A, Suzaki T, Tanaka W, Hirano HY (2009) The homeotic gene long sterile lemma (G1) specifies sterile lemma identity in the rice spikelet. Proc Natl Acad Sci USA 106(47):20103–20108. https://doi.org/10.1073/pnas.0907896106

    Article  PubMed  PubMed Central  Google Scholar 

  22. Cho SK, Kang IH, Carr T, Hannapel DJ (2012) Using the yeast three-hybrid system to identify proteins that interact with a phloem-mobile mRNA. Front Plant Sci 3:189. https://doi.org/10.3389/fpls.2012.00189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kwok CS, Barris S, Burns J (2010) Increasing low light tolerance in plants. US Patent US2010/0119688A1.

  24. Press MO, Queitsch C (2017) Variability in a short tandem repeat mediates complex epistatic interactions in Arabidopsis thaliana. Genetics 205(1):455–464. https://doi.org/10.1534/genetics.116.193359

    Article  CAS  PubMed  Google Scholar 

  25. Lee M, Dong X, Song H, Yang JY, Kim S, Hur Y (2020) Molecular characterization of Arabidopsis thaliana LSH1 and LSH2 genes. Genes Genomics 42(10):1151–1162. https://doi.org/10.1007/s13258-020-00985-x

    Article  CAS  PubMed  Google Scholar 

  26. Li X, Sun L, Tan L, Liu F, Zhu Z, Fu Y, Sun X, Sun X, Xie D, Sun C (2012) TH1, a DUF640 domain-like gene controls lemma and palea development in rice. Plant Mol Biol 78(4–5):351–359. https://doi.org/10.1007/s11103-011-9868-8

    Article  CAS  PubMed  Google Scholar 

  27. Yan D, Zhou Y, Ye S, Zeng L, Zhang X, He Z (2013) Beak-shaped grain 1/TRIANGULAR HULL 1, a DUF640 gene, is associated with grain shape, size and weight in rice. Sci China Life Sci 56(3):275–283. https://doi.org/10.1007/s11427-013-4449-5

    Article  CAS  PubMed  Google Scholar 

  28. Cho E, Zambryski PC (2011) Organ boundary1 defines a gene expressed at the junction between the shoot apical meristem and lateral organs. Proc Natl Acad Sci USA 108(5):2154–2159. https://doi.org/10.1073/pnas.1018542108

    Article  PubMed  PubMed Central  Google Scholar 

  29. Takeda S, Hanano K, Kariya A, Shimizu S, Zhao L, Matsui M, Tasaka M, Aida M (2011) CUP-SHAPED COTYLEDON1 transcription factor activates the expression of LSH4 and LSH3, two members of the ALOG gene family, in shoot organ boundary cells. Plant J 66(6):1066–1077. https://doi.org/10.1111/j.1365-313X.2011.04571.x

    Article  CAS  PubMed  Google Scholar 

  30. MacAlister CA, Park SJ, Jiang K, Marcel F, Bendahmane A, Izkovich Y, Eshed Y, Lippman ZB (2012) Synchronization of the flowering transition by the tomato TERMINATING FLOWER gene. Nat Genet 44(12):1393–1398. https://doi.org/10.1038/ng.2465

    Article  CAS  PubMed  Google Scholar 

  31. Liu C, Wang B, Li Z, Peng Z, Zhang J (2018) TsNAC1 is a key transcription factor in abiotic stress resistance and growth. Plant Physiol 176(1):742–756. https://doi.org/10.1104/pp.17.01089

    Article  CAS  PubMed  Google Scholar 

  32. Pilkington SM, Crowhurst R, Hilario E, Nardozza S, Fraser L, Peng Y, Gunaseelan K, Simpson R, Tahir J, Deroles SC et al (2018) A manually annotated Actinidia chinensis var. Chinensis (kiwifruit) genome highlights the challenges associated with draft genomes and gene prediction in plants. BMC Genomics 19(1):257. https://doi.org/10.1186/s12864-018-4656-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chao JT, Kong YZ, Wang Q, Sun YH, Gong DP, Lv j, Liu GS (2015) Mapgene2chrom, a tool to draw gene physical map based on Perl and SVG languages. Hereditas 37(1):91–97. https://doi.org/10.16288/j.yczz.2015.01.013

    Article  PubMed  Google Scholar 

  34. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24(8):1596–1599. https://doi.org/10.1093/molbev/msm092

    Article  CAS  PubMed  Google Scholar 

  35. Hu B, Jin J, Guo AY, Zhang H, Luo J, Gao G (2015) GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics 31(8):1296–1297. https://doi.org/10.1093/bioinformatics/btu817

    Article  PubMed  Google Scholar 

  36. Ampomah-Dwamena C, McGhie T, Reginald W, Montefiori M, Hellens RP, Allan AC (2009) The kiwifruit lycopene beta-cyclase plays a significant role in carotenoid accumulation in fruit. J Exp Bot 60:3765–3779. https://doi.org/10.1093/jxb/erp218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Vandesompele J, Preter DP, Pattyn F, Poppe B, Roy NV, Paepe AD (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:RESEARCH0034. https://doi.org/10.1186/gb-2002-3-7-research0034

    Article  PubMed  PubMed Central  Google Scholar 

  38. Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16(6):735–743. https://doi.org/10.1046/j.1365-313x.1998.00343.x

    Article  CAS  PubMed  Google Scholar 

  39. Bent A (2006) Arabidopsis thaliana floral dip transformation method. Methods Mol Biol 343:87–103. https://doi.org/10.1385/1-59745-130-4:87

    Article  CAS  PubMed  Google Scholar 

  40. Chen CJ, Chen H, Zhang Y, Thomas HR, Frank MH, He YH, Xia R (2020) TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant 13(8):1194–1202. https://doi.org/10.1016/j.molp.2020.06.009

    Article  CAS  PubMed  Google Scholar 

  41. Deng XW, Matsui M, Ning W, Wagner D, Quail PH (1992) Cop1, an Arabidopsis regulatory gene, encodes a protein with both a zinc-binding motif and a g beta homologous domain. Cell 71(5):791–801. https://doi.org/10.1016/0092-8674(92)90555-q

    Article  CAS  PubMed  Google Scholar 

  42. Li YY, Mao K, Zhao C, Zhao XY, Zhang HL, Shu HR, Hao YJ (2012) MdCOP1 ubiquitin E3 ligases interact with MdMYB1 to regulate light-induced anthocyanin biosynthesis and red fruit coloration in apple. Plant Physiol 160(2):1011–1022. https://doi.org/10.1104/pp.112.199703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kim S, Hahn EJ, Heo JW, Paek KY (2004) Effect of LEDs on net photosynthetic rate, growth and leaf stomata of chrysanthemum plantlets in vitro. Sci Hort 101:143–151. https://doi.org/10.1016/j.scienta.2003.10.003

    Article  Google Scholar 

  44. Poudel PR, Kataoka I, Mochioka R (2008) Effect of red- and blue-light-emitting diodes on growth and morphogenesis of grapes. Plant Cell Tiss Org 92(2):147–153. https://doi.org/10.1007/s11240-007-9317-1

    Article  Google Scholar 

  45. Xu F, Cao S, Shi L, Chen W, Su X, Yang Z (2014) Blue light irradiation affects anthocyanin content and enzyme activities involved in postharvest strawberry fruit. J Agric Food Chem 62(20):4778–4783. https://doi.org/10.1021/jf501120u

    Article  CAS  PubMed  Google Scholar 

  46. Tao R, Bai S, Ni J, Yang Q, Zhao Y, Teng Y (2018) The blue light signal transduction pathway is involved in anthocyanin accumulation in ‘Red Zaosu’ pear. Planta 248(1):37–48. https://doi.org/10.1007/s00425-018-2877-y

    Article  CAS  PubMed  Google Scholar 

  47. Yang T, Ma H, Zhang J, Wu T, Song T, Tian J, Yao Y (2019) Systematic identification of long noncoding RNAs expressed during light-induced anthocyanin accumulation in apple fruit. Plant J 100(3):572–590. https://doi.org/10.1111/tpj.14470

    Article  CAS  PubMed  Google Scholar 

  48. Zou J, Li Z, Tang H, Zhang L, Li J, Li Y, Yao N, Li Y, Yang D, Zuo Z (2021) Arabidopsis LSH8 positively regulates ABA signaling by changing the expression pattern of ABA-responsive proteins. Int J Mol Sci 22(19):10314. https://doi.org/10.3390/ijms221910314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Here we thank Professor Huiyong Zhang of Henan Agricultural University for providing plant materials.

Funding

This study was funded by grants from the China Agriculture Research System of MOF and MARA (CARS-26), the Henan Province Key R & D and Promotion Projects (212102110119), the Agricultural Science and Technology Innovation Program, and Chinese Academy of Agricultural Sciences (CAAS-ASTIP-2023-ZFRI-03).

Author information

Authors and Affiliations

Authors

Contributions

HH: prepared samples, conducted experiments and wrote the original manuscript. ML, LS and RW: gave good suggestions during manuscript preparation. YL and XQ: organized the whole research.

Corresponding authors

Correspondence to Yukuo Li or Xiujuan Qi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, H., Lin, M., Sun, L. et al. Screening and identification of photoresponse factors in kiwifruit (Actinidia arguta) development. Mol Biol Rep 51, 112 (2024). https://doi.org/10.1007/s11033-023-09073-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11033-023-09073-1

Keywords

Navigation