Skip to main content

Advertisement

Log in

Influential factors for optimizing and strengthening mesenchymal stem cells and hematopoietic stem cells co-culture

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Mesenchymal stem cells (MSCs) and Hematopoietic stem cells (HSCs) are two types of bone marrow stem cells that can proliferate and differentiate into different cell lineages. HSCs interact with MSCs under protective conditions, called niche. Numerous studies have indicated supportive effects of MSCs on HSCs proliferation and differentiation. Furthermore, HSCs have many clinical applications and could treat different hematologic and non-hematologic diseases. For this purpose, there is a need to perform in vitro studies to optimize their expansion. Therefore, various methods including co-culture with MSCs are used to address the limitations of HSCs culture. Some parameters that might be effective for improving the MSC/ HSC co-culture systems. Manipulating culture condition to enhance MSC paracrine activity, scaffolds, hypoxia, culture medium additives, and the use of various MSC sources, have been examined in different studies. In this article, we investigated the potential factors for optimizing HSCs/ MSCs co-culture. It might be helpful to apply a suitable approach for providing high-quality HSCs and improving their therapeutic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

MSCs:

Mesenchymal stem cells

HSCs:

Hematopoietic stem cells

UCB:

Umbilical cord blood

WJ:

Wharton jelly

Flt3L:

FMS-like tyrosine kinase-3 ligand

SCF:

Stem cell factor

G-CSF:

Granulocyte colony-stimulating factor

GM-CSF:

Granulocyte–macrophage colony-stimulating factor

TPO:

Thrombopoietin

Angs:

Angiopoietins

Wnt:

Wingless-related integration

LT-HSCs:

Long-term hematopoietic stem cells

ST-HSCs:

Short-term hematopoietic stem cells

IGFBP1:

Insulin-like growth factor-binding protein-1

NS:

Nucleostemin

Nfix:

Nuclear factor I/X

CFU:

Colony forming unit

CAFC:

Cobblestone area forming cells

DNMT1:

DNA methyl-transferase

LTC-IC:

Long-term culture- initiating cell

EPCR:

Endothelial protein C receptor

VLA-4, 5:

Very late antigen-4, 5

CXCR4:

C-X-C chemokine receptor 4

GVHD:

Graft versus host disease

bFGF:

Basic fibroblast growth factor

LIF:

Leukemia inhibitory factor

SDF:

Stromal-derived factor

TGFβ-RII:

Transforming growth factor-beta receptor II

MVs:

Microvesicles

miRNAs:

MicroRNAs

ROS:

Reactive oxygen species

WJ-MSCs:

Wharton jelly-derived mesenchymal stem cells

ESCs:

Embryonic stem cells

BM-MSCs:

Bone marrow-derived MSCs

CXCL12:

C-X-C chemokine ligand 12

UC:

Umbilical cord

CFU-Meg:

Megakaryocyte colony-forming unit

LFA:

Lymphocyte function-associated antigen

HOXB4:

Homeobox protein B 4

HOXA9:

Homeobox protein A 9

BMI1:

Polycomb complex protein BMI-1

PCL:

Polycaprolactone

FN:

Fibronectin

PDMS:

Polymethyl siloxane

PEG:

Polyethylene glycol

VEGF:

Vascular endothelial growth factor

TEPA:

Tetraethylenepentamine

SR1:

Aryl hydrocarbon receptor antagonist

UM171:

Pyrimidoindole derivatives

P18IN003, P18IN011:

P18 inhibitory molecules in the cell cycle

CHIR99021:

Type of glycogen synthase kinase 3β inhibitor

BIO:

Another kind of glycogen synthase kinase 3β inhibitor

NR-101:

A small non-peptidyl agonist molecule of c-MPL

5azaD / TSA:

5-Aza-2-deoxycytidine / trichostatin A

GAR:

Garcinol; a plant-derived histone acetyltransferase

AhR:

Aryl hydrocarbon receptor

TMEM183A:

Transmembrane protein 183A

PROCR:

Protein C receptor

mTOR:

Mammalian target of rapamycin

PTEN:

Phosphatase and tensin homolog

PI3K:

Phosphoinositide 3-kinase

GSK3β:

Glycogen synthase kinase 3 beta

STAT5:

Signal transducer and activator of transcription 5

HIF-1α:

Hypoxia-inducible factor-1α

HAT:

Histone acetyltransferase

VPA:

Valproic acid

HDAC:

Histone deacetylase

DEAB:

Diethylaminobenzaldehyde

zVADfmk/zLLYfmk:

Caspase and calpain inhibitors

ALDH:

Aldehyde dehydrogenase

5-HT:

5-Hydroxytryptamine

References

  1. Amiri F, Kiani AA, Bahadori M et al (2021) Co-culture of mesenchymal stem cell spheres with hematopoietic stem cells under hypoxia: a cost-effective method to maintain self-renewal and homing marker expression. Mol Biol Rep 49(2):931–941

    Article  PubMed  Google Scholar 

  2. Kokkaliaris KD, Scadden DT (2020) Cell interactions in the bone marrow microenvironment affecting myeloid malignancies. Blood Adv 415:3795–3803

    Article  Google Scholar 

  3. Nakahara F, Borger DK, Wei Q et al (2019) Engineering a haematopoietic stem cell niche by revitalizing mesenchymal stromal cells. Nat Cell Biol 215:560–567

    Article  Google Scholar 

  4. Mushahary D, Spittler A, Ce K et al (2018) Isolation, cultivation, and characterization of human mesenchymal stem cells. Cytometry A 931:19–31

    Article  Google Scholar 

  5. Schmelzer E, McKeel DT, Gerlach JC (2019) Characterization of human mesenchymal stem cells from different tissues and their membrane encasement for prospective transplantation therapies. Biomed Res Int 5:1–13

    Article  Google Scholar 

  6. Pittenger MF, Mackay AM, Beck SC et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  CAS  PubMed  Google Scholar 

  7. Al-Anazi K (2020) The future role of mesenchymal stem cells in tissue repair and medical therapeutics: realities and expectations. J Reg Med Biol Res 12:1–5

    Google Scholar 

  8. Pittenger MF, Discher DE, Péault BM et al (2019) Mesenchymal stem cell perspective: cell biology to clinical progress. NPJ Regen Med 2(4):22–37

    Article  Google Scholar 

  9. Noort W, Scherjon S, Kleijburg-Van Der Keur C et al (2003) Mesenchymal stem cells in human second-trimester bone marrow, liver, lung, and spleen exhibit a similar immunophenotype but a heterogeneous multilineage differentiation potential. Haematologica 888:845–852

    Google Scholar 

  10. Meng X, Ichim TE, Zhong J et al (2007) Endometrial regenerative cells: a novel stem cell population. J Transl Med 51:1–10

    Google Scholar 

  11. Goodarzi A, Valikhani M, Amiri F et al (2022) The mechanisms of mutual relationship between malignant hematologic cells and mesenchymal stem cells: does it contradict the nursing role of mesenchymal stem cells? Cell Commun Signal 20:21–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Saleh M, Shams Asanjan K, Movassaghpour Akbari A et al (2015) The Effect of Mesenchymal Stem Cells on Hematopoetic Stem Cells Differentiation. Sci J Iran Blood Transfus Organ 123:292–302

    Google Scholar 

  13. Amiri F, Molaei S, Bahadori M et al (2016) Autophagy-modulated human bone marrow-derived mesenchymal stem cells accelerate liver restoration in mouse models of acute liver failure. Iran Biomed J 203:135

    Google Scholar 

  14. Orkin SH, Zon LI (2008) SnapShot: hematopoiesis. Cell 132(4):712

    Article  CAS  PubMed  Google Scholar 

  15. Mangel M, Bonsall MB (2013) Stem cell biology is population biology: differentiation of hematopoietic multipotent progenitors to common lymphoid and myeloid progenitors. Theor Biol Med Model 10:5

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wilson A, Trumpp A (2006) Bone-marrow haematopoietic-stem-cell niches. Nat Rev Immunol 62:93–106

    Article  Google Scholar 

  17. Gomariz A, Isringhausen S, Helbling PM et al (2020) Imaging and spatial analysis of hematopoietic stem cell niches. Ann NY Acad Sci 14661:5–16

    Article  Google Scholar 

  18. Hurwitz SN, Jung SK, Kurre P (2020) Hematopoietic stem and progenitor cell signaling in the niche. Leukemia 34:3136–3148

    Article  PubMed  Google Scholar 

  19. Molaei S, Amiri F, Salimi R et al (2022) Therapeutic effects of mesenchymal stem cells-conditioned medium derived from suspension cultivation or silymarin on liver failure mice. Mol Biol Rep 49(11):10315–10325

    Article  CAS  PubMed  Google Scholar 

  20. Zhang P, Zhang C, Li J et al (2019) The physical microenvironment of hematopoietic stem cells and its emerging roles in engineering applications. Stem Cell Res Ther 10:1–13

    Article  Google Scholar 

  21. Futrega K, Atkinson K, Lott WB et al (2017) Spheroid coculture of hematopoietic stem/progenitor cells and monolayer expanded mesenchymal stem/stromal cells in polydimethylsiloxane microwells modestly improves in vitro hematopoietic stem/progenitor cell expansion. Tissue Eng Part C Methods 23:200–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Huang X, Zhu B, Wang X et al (2016) Three-dimensional co-culture of mesenchymal stromal cells and differentiated osteoblasts on human bio-derived bone scaffolds supports active multi-lineage hematopoiesis in vitro: Functional implication of the biomimetic HSC niche. Int J Mol Med 38:1141–1151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Khong D, Li M, Singleton A et al (2018) Stromalized microreactor supports murine hematopoietic progenitor enrichment. Biomed Microdevices 20:1–9

    Article  CAS  Google Scholar 

  24. Mayle A, Luo M, Jeong M et al (2013) Flow cytometry analysis of murine hematopoietic stem cells. Cytometry A 83:27–37

    Article  PubMed  Google Scholar 

  25. Robinson SN, Ng J, Niu T et al (2006) Superior ex vivo cord blood expansion following co-culture with bone marrow-derived mesenchymal stem cells. Bone Marrow Transplant 37:359–366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ahmadnejad M, Amirizadeh N, Mehrasa R et al (2017) Elevated expression of DNMT1 is associated with increased expansion and proliferation of hematopoietic stem cells co-cultured with human MSCs. Blood Res 52:25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Romanov YA, Volgina NE, Balashova EE et al (2017) Human umbilical cord mesenchymal stromal cells support viability of umbilical cord blood hematopoietic stem cells but not the “stemness” of their progeny in co-culture. Bull Exp Biol Med 163:523–527

    Article  PubMed  Google Scholar 

  28. Corselli M, Chin CJ, Parekh C et al (2013) Perivascular support of human hematopoietic stem/progenitor cells. Blood 121(15):2891–2901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Walenda T, Bork S, Horn P et al (2010) Co-culture with mesenchymal stromal cells increases proliferation and maintenance of haematopoietic progenitor cells. J Cell Mol Med 14(1–2):337–350

    Article  CAS  PubMed  Google Scholar 

  30. Oubari F, Amirizade N, Mohammadpour H et al (2015) The important role of FLT3-L in ex vivo expansion of hematopoietic stem cells following co-culture with mesenchymal stem cells. Cell J 17(2):201–210

    PubMed  PubMed Central  Google Scholar 

  31. Ajami M, Soleimani M, Abroun S et al (2019) Comparison of cord blood CD34+ stem cell expansion in coculture with mesenchymal stem cells overexpressing SDF-1 and soluble/membrane isoforms of SCF. J Cell Biochem 120:15297–15309

    Article  CAS  PubMed  Google Scholar 

  32. Cook MM, Doran MR, Kollar K et al (2013) Engraftment outcomes after HPC co-culture with mesenchymal stromal cells and osteoblasts. J Clin Med 2:115–135

    Article  PubMed  PubMed Central  Google Scholar 

  33. Crippa S, Santi L, Berti M et al (2021) Role of ex vivo Expanded Mesenchymal Stromal Cells in Determining Hematopoietic Stem Cell Transplantation Outcome. Front Cell Dev Biol 9:663316

    Article  PubMed  PubMed Central  Google Scholar 

  34. Li T, Chengxin Luo Ch, Zhang J et al (2021) Efficacy and safety of mesenchymal stem cells co-infusion in allogeneic hematopoietic stem cell transplantation: a systematic review and meta-analysis. Stem Cell Res & Ther 12:246

    Article  Google Scholar 

  35. Abbasi-Malati Z, Roushandeh AM, Kuwahara Y et al (2018) Mesenchymal stem cells on horizon: a new arsenal of therapeutic agents. Stem Cell Rev Rep 14:484–499

    Article  CAS  PubMed  Google Scholar 

  36. Aqmasheh S (2017) Effects of mesenchymal stem cell derivatives on hematopoiesis and hematopoietic stem cells. Adv pharm bull 7:165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Qiu G, Zheng G, Ge M et al (2018) Mesenchymal stem cell-derived extracellular vesicles affect disease outcomes via transfer of microRNAs. Stem Cell Res Ther 9:1–9

    Article  Google Scholar 

  38. Sagaradze G, Grigorieva O, Nimiritsky P et al (2019) Conditioned medium from human mesenchymal stromal cells: towards the clinical translation. Int J Mol Sci 20:1656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lazar-Karsten P, Dorn I, Meyer G et al (2011) The influence of extracellular matrix proteins and mesenchymal stem cells on erythropoietic cell maturation. Vox Sang 1011:65–76

    Article  Google Scholar 

  40. Andrade PZ, dos Santos F, Almeida-Porada G et al (2010) Systematic delineation of optimal cytokine concentrations to expand hematopoietic stem/progenitor cells in co-culture with mesenchymal stem cells. Mol Biosyst 6:1207–1215

    Article  CAS  PubMed  Google Scholar 

  41. Schuster JA, Stupnikov MR, Ma G et al (2012) Expansion of hematopoietic stem cells for transplantation: current perspectives. Exp Hematol Oncol 1:1–6

    Article  Google Scholar 

  42. Noort WA, Kruisselbrink AB, Anker PS et al (2002) Mesenchymal stem cells promote engraftment of human umbilical cord blood–derived CD34+ cells in NOD/SCID mice. Exp Hemato 30:870878

    Article  Google Scholar 

  43. Akhkand SS, Amirizadeh N, Nikougoftar M et al (2016) Evaluation of umbilical cord blood CD34+ hematopoietic stem cells expansion with inhibition of TGF-β receptorII in co-culture with bone marrow mesenchymal stromal cells. Tissue Cell 484:305–311

    Article  Google Scholar 

  44. Asgarpour K, Shojaei Z, Amiri F et al (2020) Exosomal microRNAs derived from mesenchymal stem cells: cell-to-cell messages. Cell Commun Signal 18:1–16

    Article  Google Scholar 

  45. De Luca L, Trino S, Laurenzana I (2016) MiRNAs and piRNAs from bone marrow mesenchymal stem cell extracellular vesicles induce cell survival and inhibit cell differentiation of cord blood hematopoietic stem cells: a new insight in transplantation. Oncotarget 7:6676

    Article  PubMed  Google Scholar 

  46. Jing D, Fonseca AV, Alakel N et al (2010) Hematopoietic stem cells in coculture with mesenchymal stromal cells-modeling the niche compartments in vitro. Haematologica 95:542–550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Miyoshi H, Shimizu Y, Yasui Y et al (2020) Expansion of mouse primitive hematopoietic cells in three-dimensional cultures on chemically fixed stromal cell layers. Cytotechnology 72(741–750):45

    Google Scholar 

  48. Jozaki T, Aoki K, Mizumoto H et al (2010) In vitro reconstruction of a three-dimensional mouse hematopoietic microenvironment in the pore of polyurethane foam. Cytotechnology 62:531–537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Aggarwal R, Lu J, Pompili VJ et al (2012) Hematopoietic stem cells: transcriptional regulation, ex vivo expansion and clinical application. Curr Mol Med 12:3449

    Article  Google Scholar 

  50. Robinson SN, Simmons PJ, Yang H et al (2011) Mesenchymal stem cells in ex vivo cord blood expansion. Best Pract Res Clin Haematol 24:83–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. De Lima M, Mcniece I, Robinson SN et al (2012) Cord-blood engraftment with ex vivo mesenchymal-cell coculture. N Engl J Med 367:23052315

    Google Scholar 

  52. Mousavi SH, Abroun S, Soleimani M et al (2018) 3-Dimensional nano-fibre scaffold for ex vivo expansion of cord blood haematopoietic stem cells. Artif Cells Nanomed Biotechnol 46:740–748

    Article  CAS  PubMed  Google Scholar 

  53. Mousavi SH, Abroun S, Soleimani M et al (2015) Expansion of human cord blood hematopoietic stem/progenitor cells in three-dimensional Nano scaffold coated with Fibronectin. Int J Hematol Oncol Stem Cell Res 9:72

    PubMed  PubMed Central  Google Scholar 

  54. Raic A, Rödling L, Kalbacher H et al (2014) Biomimetic macroporous PEG hydrogels as 3D scaffolds for the multiplication of human hematopoietic stem and progenitor cells. Biomaterials 35:929–940

    Article  CAS  PubMed  Google Scholar 

  55. Hermitte F, Brunet de la Grange P, Belloc F et al (2006) Very low O2 concentration [0.1%] favors G0 return of dividing CD34+ cells. Stem cells 24:65–73

    Article  PubMed  Google Scholar 

  56. Zhang CC, Sadek HA (2014) Hypoxia and metabolic properties of hematopoietic stem cells. Anti-oxide Redox Signal 20:1891–1901

    Article  Google Scholar 

  57. Suda T, Takubo K, Semenza GL (2011) Metabolic regulation of hematopoietic stem cells in the hypoxic niche. Cell Stem Cell 9:298–310

    Article  CAS  PubMed  Google Scholar 

  58. Jang YY, Sharkis SJ (2007) A low level of reactive oxygen species selects for primitive hematopoietic stem cells that may reside in the low-oxygenic niche. Blood 110:3056–3063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhao D, Liu L, Chen Q et al (2018) Hypoxia with Wharton’s jelly mesenchymal stem cell coculture maintains stemness of umbilical cord blood-derived CD34+ cells. Stem Cell Res Ther 9:1–11

    Article  Google Scholar 

  60. Ezashi T, Das P, Roberts RM (2005) Low O2 tensions and the prevention of differentiation of hES cells. Proc Natl Acad Sci 102:4783–4788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Mohammadali F, Abroun S, Atashi A (2018) Mild hypoxia and human bone marrow mesenchymal stem cells synergistically enhance expansion and homing capacity of human cord blood CD34+ stem cells. Iran J Basic Med Sci 21:709

    PubMed  PubMed Central  Google Scholar 

  62. Amiri F, Halabian R, Dehgan Harati M et al (2015) Positive selection of Wharton’s jelly-derived CD105+ cells by MACS technique and their subsequent cultivation under suspension culture condition: A simple, versatile culturing method to enhance the multipotentiality of mesenchymal stem cells. Hematol 20:208–216

    Article  CAS  Google Scholar 

  63. Anzalone R, Iacono ML, Corrao S et al (2010) New emerging potentials for human Wharton’s jelly mesenchymal stem cells: immunological features and hepatocyte-like differentiative capacity. Stem Cells Dev 194:423–438

    Article  Google Scholar 

  64. Nilsson SK, Johnston HM, Whitty GA et al (2005) Osteo pontin, a key component of the hematopoietic stem cell niche and regulator of primitive hematopoietic progenitor cells. Blood 106:1232–1239

    Article  CAS  PubMed  Google Scholar 

  65. Raio L, Cromi A, Ghezzi F et al (2005) Hyaluronan content of Wharton’s jelly in healthy and down syndrome fetuses. Matrix Biol 24:166–174

    Article  CAS  PubMed  Google Scholar 

  66. Li Q, Zhao D, Chen Q et al (2019) Wharton’s jelly mesenchymal stem cell-based or umbilical vein endothelial cell-based serum-free coculture with cytokines supports the ex vivo expansion/maintenance of cord blood hematopoietic stem/progenitor cells. Stem Cell Res Ther 101:1–9

    Google Scholar 

  67. Lo Iacono M, Russo E, Anzalone R et al (2018) Wharton’s jelly mesenchymal stromal cells support the expansion of cord blood–derived CD34+ cells mimicking a hematopoietic niche in a direct cell–cell contact culture system. Cell Transplant 27(1):117–129

    Article  PubMed  PubMed Central  Google Scholar 

  68. Raffo D, Maglioco A, Fernandez Sasso D (2021) A protocol for umbilical cord tissue cryopreservation as a source of mesenchymal stem cells. Mol Biol Rep 48(2):1559–1565

    Article  PubMed  Google Scholar 

  69. Dai Y, Cui X, Zhang G et al (2022) Development of a novel feeding regime for large scale production of human umbilical cord mesenchymal stem/stromal cells. Cytotechnology 74:351–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wu KH, Tsai C, Wu HP et al (2013) Human application of ex vivo expanded umbilical cord-derived mesenchymal stem cells: enhance hematopoiesis after cord blood transplantation. Cell Trans 22:2041–2051

    Article  Google Scholar 

  71. Xu M, Zhang B, Liu Y et al (2014) The immunologic and hematopoietic profiles of mesenchymal stem cells derived from different sections of human umbilical cord. Acta Biochim Biophys Sin 46:1056–1065

    Article  CAS  PubMed  Google Scholar 

  72. Tipnis S, Viswanathan C (2010) Umbilical cord matrix derived mesenchymal stem cells can change the cord blood transplant scenario. Int J Stem Cells 3:103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Yang S, Wei Y, Sun R et al (2020) Umbilical cord blood-derived mesenchymal stromal cells promote myeloid-derived suppressor cell proliferation by secreting HLA-G to reduce acute graft-versus-host disease after hematopoietic stem cell transplantation. Cito Ther 22:718–733

    CAS  Google Scholar 

  74. Gao L, Chen X, ZhAng X et al (2006) Human umbilical cord blood-derived stromal cell, a new resource of feeder layer to expand human umbilical cord blood CD34+ cells in vitro. Blood Cells Mol Dis 36:322–328

    Article  CAS  PubMed  Google Scholar 

  75. Chen Y, Liang Y, Luo X et al (2020) Oxidative resistance of leukemic stem cells and oxidative damage to hematopoietic stem cells under pro-oxidative therapy. Cell Death Dis 11:1–12

    Google Scholar 

  76. Hu L, Zhang Y, Miao W et al (2019) Reactive oxygen species and Nrf2: functional and transcriptional regulators of hematopoiesis. Oxid Med Cell Longev 2019:5153268

    Article  PubMed  PubMed Central  Google Scholar 

  77. Baur JA, Sinclair DA (2006) Therapeutic potential of resveratrol: the in vivo evidence. Nat Rev Drug Discov 5:493–506

    Article  CAS  PubMed  Google Scholar 

  78. Heinz N, Ehrnström B, Schambach A et al (2015) Comparison of different cytokine conditions reveals resveratrol as a new molecule for ex vivo cultivation of cord blood-derived hematopoietic stem cells. Stem Cells Transl Med 4:1064–1072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Tang C, Zhang W, Cai H et al (2019) Resveratrol improves ex vivo expansion of CB-CD34+ cells via downregulating intracellular reactive oxygen species level. J Cell Biochem 120:7778–7787

    Article  CAS  PubMed  Google Scholar 

  80. Vaidya A, Kale V, Poonawala M et al (2018) Mesenchymal stromal cells enhance the hematopoietic stem cell-supportive activity of resveratrol. Regen Med 13:409–425

    Article  CAS  PubMed  Google Scholar 

  81. Zaker F, Nasiri N, Oodi A et al (2013) Evaluation of umbilical cord blood CD34+ hematopoietic stem cell expansion in co-culture with bone marrow mesenchymal stem cells in the presence of TEPA. Hematology 18:39–45

    Article  CAS  PubMed  Google Scholar 

  82. Zhang Y, Gao Y (2016) Novel chemical attempts at ex vivo hematopoietic stem cell expansion. Int J Hematol 103:519–529

    Article  CAS  PubMed  Google Scholar 

  83. Singh KP, Casado FL, Opanashuk LA et al (2009) The aryl hydrocarbon receptor has a normal function in the regulation of hematopoietic and other stem/progenitor cell populations. Biochem Pharmacol 77:577–587

    Article  CAS  PubMed  Google Scholar 

  84. Fares I, Chagraoui J, Gareau Y et al (2014) Cord blood expansion Pyrimidoindole derivatives are agonists of human hematopoietic stem cell self-renewal. Science 345:1509–1512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Gao Y, Yang P, Shen H et al (2015) Small molecule inhibitors targeting INK4 protein p18[INK4C] enhance ex vivo expansion of haematopoietic stem cells. Nat Commun 6:6328

    Article  CAS  PubMed  Google Scholar 

  86. Chen C, Liu Y, Liu R et al (2008) TSC-mTOR maintains quiescence and function of hematopoietic stem cells by repressing mitochondrial biogenesis and reactive oxygen species. J Exp Med 205:2397–2408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ying QL, Wray J, Nichols J et al (2008) The ground state of embryonic stem cell self-renewal. Nature 453:519–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Ko KH, Holmes T, Palladinetti P et al (2011) GSK-3β inhibition promotes engraftment of ex vivo-expanded hematopoietic stem cells and modulates gene expression. Stem Cells 29:108–118

    Article  CAS  PubMed  Google Scholar 

  89. Araki H, Yoshinaga K, Boccuni P et al (2007) Chromatin-modifying agents permit human hematopoietic stem cells to undergo multiple cell divisions while retaining their repopulating potential. Blood 109:3570–3578

    Article  CAS  PubMed  Google Scholar 

  90. Nishino T, Wang C, Mochizuki-Kashio M et al (2011) Ex vivo expansion of human hematopoietic stem cells by garcinol, a potent inhibitor of histone acetyltransferase. PLoS ONE 6:e24298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. De Felice L, Tataelli C, Mascolo MG et al (2005) Histone deacetylase inhibitor valproic acid enhances the cytokine-induced expansion of human hematopoietic stem cells. Cancer Res 65:1505–1513

    Article  PubMed  Google Scholar 

  92. Chute JP, Muramoto GG, Whitesides J et al (2006) Inhibition of aldehyde dehydrogenase and retinoid signaling induces the expansion of human hematopoietic stem cells. Proc Natl Acad Sci USA 103:1707–1712

    Article  Google Scholar 

  93. Yang M, Li K, Ng PC et al (2007) Promoting effects of serotonin on hematopoiesis: ex vivo expansion of cord blood CD34+ stem/progenitor cells, proliferation of bone marrow stromal cells, and antiapoptotic. Stem Cells 25:1800–1806

    Article  CAS  PubMed  Google Scholar 

  94. Ms V, Kale VP, Limaye LS (2010) Expansion of cord blood CD34 cells in presence of zVADfmk and zLLYfmk improved their in vitro functionality and in vivo engraftment in NOD/SCID mouse. PLoS ONE 58:e12221

    Google Scholar 

  95. Ogilvy S, Metcalf D, Print CG et al (1999) Constitutive Bcl-2 expression throughout the hematopoietic compartment affects multiple lineages and enhances progenitor cell survival. Proc Natl Acad Sci USA 96:14943–14948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Driscoll J, Patel T (2019) The mesenchymal stem cell secretome as a cellular regenerative therapy for liver disease. J gastroenterol 54:763–773

    Article  PubMed  PubMed Central  Google Scholar 

  97. Jiang H, Wang H, Liu T (2018) Co-cultured the MSCs and cardiomyocytes can promote the growth of cardiomyocytes. Cytotechnology 70:793–806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Bazinet A, Popradi G (2019) A general practitioner’s guide to hematopoietic stem-cell transplantation. Curr Oncol 26:187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Takagaki S, Yamashita R, Hashimoto N et al (2019) Galactosyl carbohydrate residues on hematopoietic stem/progenitor cells are essential for homing and engraftment to the bone marrow. Sci Rep 9:1–11

    Article  Google Scholar 

  100. Feng Q, Chai C, Jiang XS et al (2006) Expansion of engrafting human hematopoietic stem/progenitor cells in three-dimensional scaffolds with surface immobilized fibronectin. J Biomed Mater Res A 78:781–791

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was founded by the Hamadan University of Medical Sciences, Code: IR.UMSHA.REC.1400.183, [grant number: 140004012854]. Special thanks to Delaram Yaghoubzadeh.

Funding

This work was founded by the Hamadan University of Medical Sciences [grant No. 140004012854].

Author information

Authors and Affiliations

Authors

Contributions

Mandana Shirdareh has written the first draft of the manuscript. Mohammad Pouya Samiee and Armita Safari have participated to write the first manuscript and figure preparation. Fatemeh Amiri has reviewed the text. All authors commented on previous versions of the manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to Fatemeh Amiri.

Ethics declarations

Competing interests

All authors contributed in this review clearly state that there is no conflict of interest either in authorship or financial benefits.

Ethical approval

This is a review article. The research ethic committee of Hamadan University of Medical Sciences has confirmed that no ethical approval is required.

Consent to participate

Not applicable.

Consent to Publication

All authors reviewed the manuscript and consent to publish.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shirdare, M., Amiri, F., Samiee, M.P. et al. Influential factors for optimizing and strengthening mesenchymal stem cells and hematopoietic stem cells co-culture. Mol Biol Rep 51, 189 (2024). https://doi.org/10.1007/s11033-023-09041-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11033-023-09041-9

Keywords

Navigation