Skip to main content

Advertisement

Log in

Nisin and non-essential amino acids: new perspective in differentiation of neural progenitors from human-induced pluripotent stem cells in vitro

  • Research Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Over the past decades, stem cell therapy has been investigated as a promising approach towards various diseases, including neurodegenerative disorders. Stem cells show the capability to differentiate into neuronal progenitor cells in vitro. In the present study, the differentiation potential of human-induced pluripotent stem cells (hiPSCs) into neural lineages was examined under the efficient induction media containing forskolin and 3-isobutyl-1-methyl-xanthine (IBMX) in the presence of nisin (Ni), non-essential amino acids (NEAA) and combination of those (NEAA-Ni) in vitro. The optimum concentrations of these factors were obtained by MTT assay and acridine orange (AO) staining. The effect of Ni and NEAA on the expression rate of neural-specific markers including NSE, MAP2, and ß-tubulin III was studied via immunocytochemistry (ICC) and real-time RT-PCR analyses. Our results indicated that the induction medium containing Ni or NEAA increased the gene and protein expression of NSE, MAP2, and β-tubulin III on the 14th differentiation day. On the other hand, NEAA-Ni showed a less-differentiated hiPSCs compared to Ni and NEAA alone. In conclusion, the obtained results illustrated that Ni and NEAA could be applied as effective factors for neural differentiation of hiPSCs in the future.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AO:

Acridine orange

AA:

Amino acids

cAMP:

Cyclic adenosine monophosphate

ESCs:

Embryonic stem cells

EB:

Ethidium Bromide

hiPSCs:

Human induced pluripotent stem cells

IBMX:

3-Isobutyl-1-methyl-xanthine

MSCs:

Mesenchymal stem cells

MAP-2:

Microtubule-associated protein-2

NSE:

Neuron-specific enolase

Ni:

Nisin

NEAA-Ni:

Ni in combination with NEAA

NEAA:

Non-essential amino acids

RNA:

Ribonucleic acids

References

  1. Lu P. Stem cell transplantation for spinal cord injury repair. Prog Brain Res. 2017;231:1–32.

    PubMed  Google Scholar 

  2. Yuan T, Liu Q, Kang J, Gao H, et al. High-dose neural stem/progenitor cell transplantation increases engraftment and neuronal distribution and promotes functional recovery in rats after acutely severe spinal cord injury. Stem Cells Int. 2019;2019:9807978.

    PubMed  PubMed Central  Google Scholar 

  3. Silvestro S, Bramanti P, Trubiani O, Mazzon E. Stem cells therapy for spinal cord injury: an overview of clinical trials. Int J Mol Sci. 2020;21(2):659.

    CAS  PubMed Central  Google Scholar 

  4. Pittenger MF, Discher DE, Péault BM, Phinney DG, et al. Mesenchymal stem cell perspective: cell biology to clinical progress. NPJ Regen Med. 2019;4(1):22.

    PubMed  PubMed Central  Google Scholar 

  5. Mukhamedshina YO, Gracheva OA, Mukhutdinova DM, Chelyshev YA, et al. Mesenchymal stem cells and the neuronal microenvironment in the area of spinal cord injury. Neural Regen Res. 2019;14(2):227–37.

    PubMed  PubMed Central  Google Scholar 

  6. Wang YH, Guo YC, Wang DR, Liu JY, et al. Adipose stem cell-based clinical strategy for neural regeneration: a review of current opinion. Stem Cells Int. 2019;2019:8502370.

    PubMed  PubMed Central  Google Scholar 

  7. Sugaya K, Vaidya M. Stem cell therapies for neurodegenerative diseases. Adv Exp Med Biol. 2018;1056:61–84.

    CAS  PubMed  Google Scholar 

  8. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76.

    CAS  PubMed  Google Scholar 

  9. Takahashi K, Okita K, Nakagawa M, Yamanaka S. Induction of pluripotent stem cells from fibroblast cultures. Nat Protoc. 2007;2(12):3081–9.

    CAS  PubMed  Google Scholar 

  10. Ghaedi M, Niklason LE. Human pluripotent stem cells (iPSC) generation, culture, and differentiation to lung progenitor cells. Methods Mol Biol. 2019;1576:55–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Nakao S, Ihara D, Hasegawa K, Kawamura T. Applications for induced pluripotent stem cells in disease modelling and drug development for heart diseases. Eur Cardiol. 2020;15:1–10.

    PubMed  Google Scholar 

  12. Castro-Viñuelas R, Sanjurjo-Rodríguez C, Piñeiro-Ramil M, Hermida-Gómez T, et al. Generation and characterization of human induced pluripotent stem cells (iPSCs) from hand osteoarthritis patient-derived fibroblasts. Sci Rep. 2020;10(1):4272.

    PubMed  PubMed Central  Google Scholar 

  13. Genova E, Cavion F, Lucafò M, Leo L, et al. Induced pluripotent stem cells for therapy personalization in pediatric patients: Focus on drug-induced adverse events. World J Stem Cells. 2019;11(12):1020–44.

    PubMed  PubMed Central  Google Scholar 

  14. Zhang H, Shao X, Peng Y, Teng Y, et al. A novel machine learning based approach for iPS progenitor cell identification. PLoS Comput Biol. 2019;15(12):e1007351.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Bertucci TB, Dai G. Biomaterial engineering for controlling pluripotent stem cell fate. Stem Cells Int. 2018;2018:9068203.

    PubMed  PubMed Central  Google Scholar 

  16. Zhang FQ, Jiang JL, Zhang JT, Niu H, et al. Current status and future prospects of stem cell therapy in Alzheimer’s disease. Neural Regen Res. 2020;15(2):242–50.

    PubMed  Google Scholar 

  17. Oh Y. Patient-specific pluripotent stem cell-based Parkinson’s disease models showing endogenous alpha-synuclein aggregation. BMB Rep. 2019;52(6):349–59.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Rindt H, Tom CM, Lorson CL, Mattis VB. Optimization of trans-Splicing for Huntington’s Disease RNA Therapy. Front Neurosci. 2017;11:544.

    PubMed  PubMed Central  Google Scholar 

  19. Csobonyeiova M, Polak S, Zamborsky R, Danisovic L. Recent progress in the regeneration of spinal cord injuries by induced pluripotent stem cells. Int J Mol Sci. 2019;20(15):3838.

    CAS  PubMed Central  Google Scholar 

  20. Verpelli C, Carlessi L, Bechi G, Fusar PE, et al. Comparative neuronal differentiation of self-renewing neural progenitor cell lines obtained from human induced pluripotent stem cells. Front Cell Neurosci. 2013;7:175.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Wu YY, Chiu FL, Yeh CS, Kuo HC. Opportunities and challenges for the use of induced pluripotent stem cells in modelling neurodegenerative disease. Open Biol. 2019;9(1):180177.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Denham M, Dottori M. Neural differentiation of induced pluripotent stem cells. Methods Mol Biol. 2011;793:99–110.

    CAS  PubMed  Google Scholar 

  23. Salimi A, Nadri S, Ghollasi M, Khajeh K, et al. Comparison of different protocols for neural differentiation of human induced pluripotent stem cells. Mol Biol Rep. 2014;41(3):1713–21.

    CAS  PubMed  Google Scholar 

  24. Thompson R, Casali C, Chan C. Forskolin and IBMX induce neural transdifferentiation of MSCs through downregulation of the NRSF. Sci Rep. 2019;9(1):2969.

    PubMed  PubMed Central  Google Scholar 

  25. Shahbazi A, Safa M, Alikarami F, Kargozar S, et al. Rapid induction of neural differentiation in human umbilical cord matrix mesenchymal stem cells by cAMP-elevating agents. Int J Mol Cell Med. 2016;5(3):167–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Małaczewska J, Kaczorek-Łukowska E, Wójcik R, Siwicki AK. Antiviral effects of nisin, lysozyme, lactoferrin and their mixtures against bovine viral diarrhoea virus. BMC Vet Res. 2019;15(1):318.

    PubMed  PubMed Central  Google Scholar 

  27. Garcia-Gutierrez E, O’Connor PM, Saalbach G, Walsh CJ, et al. First evidence of production of the lantibiotic nisin P. Sci Rep. 2020;10(1):3738.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Ge X, Teng K, Wang J, Zhao F, et al. Ligand determinants of nisin for its induction activity. J Dairy Sci. 2016;99(7):5022–31.

    CAS  PubMed  Google Scholar 

  29. Kamarajan P, Hayami T, Matte B, Liu Y, et al. Nisin ZP, a bacteriocin and food preservative, inhibits head and neck cancer tumorigenesis and prolongs survival. PLoS ONE. 2015;10(7):e0131008.

    PubMed  PubMed Central  Google Scholar 

  30. Zainodini N, Hassanshahi G, Hajizadeh M, Khanamani F-P, et al. Nisin induces cytotoxicity and apoptosis in human asterocytoma cell line (SW1088). Asian Pac J Cancer Prev. 2018;19(8):2217–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Hou Y, Yin Y, Wu G. Dietary essentiality of “nutritionally non-essential amino acids” for animals and humans. Exp Biol Med (Maywood). 2015;240(8):997–1007.

    CAS  Google Scholar 

  32. Wu G. Amino acids: metabolism, functions, and nutrition. Amino Acids. 2009;37(1):1–17.

    PubMed  Google Scholar 

  33. Choi BH, Coloff JL. The diverse functions of non-essential amino acids in cancer. Cancers (Basel). 2019;11(5):675.

    CAS  PubMed Central  Google Scholar 

  34. Bonfili L, Cecarini V, Cuccioloni M, Angeletti M, et al. Essential amino acid mixtures drive cancer cells to apoptosis through proteasome inhibition and autophagy activation. Febs j. 2017;284(11):1726–37.

    CAS  PubMed  Google Scholar 

  35. Lahmy R, Soleimani M, Sanati MH, Behmanesh M, et al. MiRNA-375 promotes beta pancreatic differentiation in human induced pluripotent stem (hiPS) cells. Mol Biol Rep. 2014;41(4):2055–66.

    CAS  PubMed  Google Scholar 

  36. McComish SF, Caldwell MA. Generation of defined neural populations from pluripotent stem cells. Philos Trans R Soc Lond B Biol Sci. 2018. https://doi.org/10.1098/rstb.2017.0214.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Volarevic V, Markovic BS, Gazdic M, Volarevic A, et al. Ethical and safety issues of stem cell-based therapy. Int J Med Sci. 2018;15(1):36–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Tukker AM, Wijnolts FMJ, de Groot A, Westerink RHS. Human iPSC-derived neuronal models for in vitro neurotoxicity assessment. Neurotoxicology. 2018;67:215–25.

    CAS  PubMed  Google Scholar 

  39. Yap MS, Nathan KR, Yeo Y, Lim LW, et al. Neural differentiation of human pluripotent stem cells for nontherapeutic applications: toxicology, pharmacology, and in vitro disease modeling. Stem Cells Int. 2015;2015:105172.

    PubMed  PubMed Central  Google Scholar 

  40. Sheridan SD, Surampudi V, Rao RR. Analysis of embryoid bodies derived from human induced pluripotent stem cells as a means to assess pluripotency. Stem Cells Int. 2012;2012:738910.

    PubMed  PubMed Central  Google Scholar 

  41. Zhu L, Gomez-Duran A, Saretzki G, Jin S, et al. The mitochondrial protein CHCHD2 primes the differentiation potential of human induced pluripotent stem cells to neuroectodermal lineages. J Cell Biol. 2016;215(2):187–202.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Lepski G, Jannes C, Nikkhah G, Bischofberger J. cAMP promotes the differentiation of neural progenitor cells in vitro via modulation of voltage-gated calcium channels. Front Cell Neurosci. 2013;7:155.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Pan Y, Chen X, Wang S, Yang S, et al. In vitro neuronal differentiation of cultured human embryonic germ cells. Biochem Biophys Res Commun. 2005;327(2):548–56.

    CAS  PubMed  Google Scholar 

  44. Isgrò MA, Bottoni P, Scatena R. Neuron-specific enolase as a biomarker: biochemical and clinical aspects. Adv Exp Med Biol. 2015;867:125–43.

    PubMed  Google Scholar 

  45. Sanchez C, Diaz-Nido J, Avila J. Phosphorylation of microtubule-associated protein 2 (MAP2) and its relevance for the regulation of the neuronal cytoskeleton function. Prog Neurobiol. 2000;61(2):133–68.

    CAS  PubMed  Google Scholar 

  46. Chacon J, Rogers CD. Early expression of Tubulin Beta-III in avian cranial neural crest cells. Gene Expr Patterns. 2019;34:119067.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Hu Q, Agarwal U, Bequette BJ. Gluconeogenesis, non-essential amino acid synthesis and substrate partitioning in chicken embryos during later development. Poult Sci. 2017;96(2):414–24.

    CAS  PubMed  Google Scholar 

  48. Gardner DK. Changes in requirements and utilization of nutrients during mammalian preimplantation embryo development and their significance in embryo culture. Theriogenology. 1998;49(1):83–102.

    CAS  PubMed  Google Scholar 

  49. Shan J, Hamazaki T, Tang TA, Terada N, et al. Activation of the amino acid response modulates lineage specification during differentiation of murine embryonic stem cells. Am J Physiol Endocrinol Metab. 2013;305(3):E325–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Bianchi F, Malboubi M, Li Y, George JH, et al. Rapid and efficient differentiation of functional motor neurons from human iPSC for neural injury modelling. Stem Cell Res. 2018;32:126–34.

    CAS  PubMed  Google Scholar 

  51. Corti S, Nizzardo M, Simone C, Falcone M, et al. Genetic correction of human induced pluripotent stem cells from patients with spinal muscular atrophy. Sci Transl Med. 2012;4(165):165ra2.

    Google Scholar 

  52. Zhang M, Ngo J, Pirozzi F, Sun YP, et al. Highly efficient methods to obtain homogeneous dorsal neural progenitor cells from human and mouse embryonic stem cells and induced pluripotent stem cells. Stem Cell Res Ther. 2018;9(1):67.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Joo NE, Ritchie K, Kamarajan P, Miao D, et al. Nisin, an apoptogenic bacteriocin and food preservative, attenuates HNSCC tumorigenesis via CHAC1. Cancer Med. 2012;1(3):295–305.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Bui VT, Tseng HC, Kozlowska A, Maung PO, et al. Augmented IFN-γ and TNF-α induced by probiotic bacteria in NK cells mediate differentiation of stem-like tumors leading to inhibition of tumor growth and reduction in inflammatory cytokine release; regulation by IL-10. Front Immunol. 2015;6:576.

    PubMed  PubMed Central  Google Scholar 

  55. Han N, Jia L, Guo L, Su Y, et al. Balanced oral pathogenic bacteria and probiotics promoted wound healing via maintaining mesenchymal stem cell homeostasis. Stem Cell Res Ther. 2020;11(1):61.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Moll GN, Clark J, Chan WC, Bycroft BW, et al. Role of transmembrane pH gradient and membrane binding in nisin pore formation. J Bacteriol. 1997;179(1):135.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Giffard CJ, Ladha S, Mackie AR, Clark DC, et al. Interaction of nisin with planar lipid bilayers monitored by fluorescence recovery after photobleaching. J Membr Biol. 1996;151(3):293–300.

    CAS  PubMed  Google Scholar 

  58. Bartholomae M, Baumann T, Nickling JH, Peterhoff D, et al. Expanding the genetic code of lactococcus lactis and Escherichia coli to incorporate non-canonical amino acids for production of modified lantibiotics. Front Microbiol. 2018;9:657.

    PubMed  PubMed Central  Google Scholar 

  59. Zhou L, van Heel AJ, Montalban-Lopez M, Kuipers OP. Potentiating the activity of nisin against Escherichia coli. Front Cell Dev Biol. 2016;4:7.

    PubMed  PubMed Central  Google Scholar 

Download references

Funding

The work was not supported by any Department.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marzieh Ghollasi.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors. The hiPSCs were purchased from The Stem Cell Technology Research Center.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eftekhari, E., Ghollasi, M., Halabian, R. et al. Nisin and non-essential amino acids: new perspective in differentiation of neural progenitors from human-induced pluripotent stem cells in vitro. Human Cell 34, 1142–1152 (2021). https://doi.org/10.1007/s13577-021-00537-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-021-00537-9

Keywords

Navigation