Skip to main content
Log in

Variation in anthocyanin pigmentation by R1-navajo gene, development and validation of breeder-friendly markers specific to C1-Inhibitor locus for in-vivo haploid production in maize

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

In-vivo maternal haploids serve as the basis of doubled haploid (DH) breeding in maize. R1-navajo (R1-nj) gene governing anthocyanin colouration in the endosperm and embryo is widely used to identify haploid seeds. However, the expression of R1-nj depends on genetic-background of source-germplasm used for deriving DH-lines. Further, presence of C1-Inhibitor (C1-I) gene suppresses the expression of R1-nj, thus makes the selection of haploids difficult.

Methods

In the present study, 178 subtropically-adapted maize inbreds were crossed with two R1-nj donors ‘that do not have haploid induction genes’. Of these, 76.4% inbreds developed purple colour in endosperm, while 23.6% did not show any colouration. In case of scutellum, 62.9% inbreds possessed colour and 37.1% were colourless. The anthocyanin intensity varied greatly, with 19.66% and 42.98% inbreds displayed the least intensity, while 16.85% and 0.84% inbreds showed the highest intensity in endosperm and scutellum, respectively. Two C1-I specific breeder-friendly markers (MGU-CI-InDel8 and MGU-C1-SNP1) covering (i) 8 bp InDel and (ii) A to G SNP, respectively, were developed. MGU-CI-InDel8 and MGU-C1-SNP1 markers predicted presence of C1-I allele with 92.9% and 84.7% effectiveness, respectively. However, when both markers were considered together, they provided 100% effectiveness.

Conclusions

These markers of C1-I gene would help in saving valuable resources and time during haploid induction in maize. The information generated here assume great significance in DH breeding of maize.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Seguí-Simarro JM, Jacquier N, Widiez T (2021) Overview of in vitro and in vivo doubled haploid technologies. Doubled haploid technol. https://doi.org/10.1007/978-1-0716-1315-3_1

    Article  Google Scholar 

  2. Trampe B, Batîru G, Pereira da Silva A, Frei UK, Lübberstedt T (2022) QTL mapping for haploid inducibility using genotyping by sequencing in maize. Plants 11(7):878. https://doi.org/10.3390/plants11070878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dermail A, Chankaew S, Lertrat K, Lübberstedt T, Suriharn K (2021) Selection gain of maize haploid inducers for the tropical Savanna environments. Plants 10(12):2812. https://doi.org/10.3390/plants10122812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Uliana Trentin H, Frei UK, Lübberstedt T (2020) Breeding maize maternal haploid inducers. Plants 9(5):614. https://doi.org/10.3390/plants9050614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kelliher T, Starr D, Richbourg L, Chintamanani S, Delzer B, Nuccio ML, Green J, Chen Z, McCuiston J, Wang W, Liebler T (2017) Matrilineal, a sperm-specific phospholipase, triggers maize haploid induction. Nature 542(7639):105–109. https://doi.org/10.1038/nature20827

    Article  CAS  PubMed  Google Scholar 

  6. Zhong Y, Liu C, Qi X, Jiao Y, Wang D, Wang Y, Liu Z, Chen C, Chen B, Tian X, Li J (2019) Mutation of ZmDMP enhances haploid induction in maize. Nat plants 5(6):575–580. https://doi.org/10.1038/s41477-019-0443-7

    Article  PubMed  Google Scholar 

  7. Chaikam V, Molenaar W, Melchinger AE, Boddupalli PM (2019) Doubled haploid technology for line development in maize: technical advances and prospects. Theor Appl Genet 132(12):3227–3243. https://doi.org/10.1007/s00122-019-03433-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Melchinger AE, Schipprack W, Mi X, Mirdita V (2015) Oil content is superior to oil mass for identification of haploid seeds in maize produced with high oil inducers. Crop Sci 55(1):188–195. https://doi.org/10.2135/cropsci2014.06.0432

    Article  Google Scholar 

  9. Geiger HH (2009) Doubled haploids handbook of maize. Springer, New York. https://doi.org/10.1007/978-0-387-77863-1_32

    Book  Google Scholar 

  10. Nanda DK, Chase SS (1966) An embryo marker for detecting monoploids of maize (Zea Mays L.) 1. Crop Sci 6(2):213–215. https://doi.org/10.2135/cropsci1966.0011183X000600020036x

    Article  Google Scholar 

  11. Chaikam V, Nair SK, Babu R, Martinez L, Tejomurtula J, Boddupalli PM (2015) Analysis of effectiveness of R1-nj anthocyanin marker for in vivo haploid identification in maize and molecular markers for predicting the inhibition of R1-nj expression. Theor Appl Genet 128(1):159–171. https://doi.org/10.1007/s00122-014-2419-3

    Article  CAS  PubMed  Google Scholar 

  12. Coe EH Jr (1962) Spontaneous mutation of the aleurone color inhibitor in maize. Genetics 47(6):779. https://doi.org/10.1093/genetics/47.6.779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cone KC, Burr FA, Burr B (1986) Molecular analysis of the maize anthocyanin regulatory locus C1. Proc Natl Acad Sci USA 83(24):9631–9635. https://doi.org/10.1073/pnas.83.24.9631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Prigge V, Sánchez C, Dhillon BS, Schipprack W, Araus JL, Bänziger M, Melchinger AE (2011) Doubled haploids in tropical maize: I. Effects of inducers and source germplasm on in vivo haploid induction rates. Crop Sci 51(4):1498–1506. https://doi.org/10.2135/cropsci2010.10.0568

    Article  Google Scholar 

  15. Paz-Ares J, Ghosal D, Wienand U, Peterson PA, Saedler H (1987) The regulatory c1 locus of Zea mays encodes a protein with homology to myb proto-oncogene products and with structural similarities to transcriptional activators. EMBO J 6(12):3553–3558. https://doi.org/10.1002/j.1460-2075.1987.tb02684.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. FAOSTAT (2020) Trade/crops and livestock products. https://doi.org/http://www.fao.org/faostat/en/#data/TP

  17. Khulbe RK, Pattanayak A, Panday V (2019) R1-nj expression in parental inbreds as a predictor of amenability of maize hybrids to R1-nj-based doubled haploid development. Indian J Genet Plant Breed 79(04):678–684. https://doi.org/10.31742/IJGPB.79.4.5

    Article  CAS  Google Scholar 

  18. Prasanna BM, Chaikam V, Mahuku G (2012) Doubled haploid technology in maize breeding: theory and practice. CIMMYT, Batan

    Google Scholar 

  19. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symp Series 41:95–98

    CAS  Google Scholar 

  20. Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard R (1984) Ribosomal DNA spacer-length polymorphisms in barley: mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci USA 81(24):8014–8018. https://doi.org/10.1073/pnas81248014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Battistelli GM, Von Pinho RG, Justus A, Couto EGO, Balestre M (2013) Production and identification of doubled haploids in tropical maize. Genet Mol Res 12(4):4230–4242. https://doi.org/10.4238/2013

    Article  CAS  PubMed  Google Scholar 

  22. Rádi F, Török K, Nagymihály M, Kereszt A, Dudits D (2020) Improved reliability in production of maize inbred lines by the combination of the R1-navajo marker with flow cytometry or microsatellite genotyping. Cereal Res Commun 48(4):423–430. https://doi.org/10.1007/s42976-020-00054-9

    Article  CAS  Google Scholar 

  23. Dellaporta SL, Greenblatt I, Kermicle JL, Hicks JB, Wessler SR (1988) Molecular cloning of the maize R-nj allele by transposon tagging with Ac. Chromosome structure and function. Springer, Boston, MA, pp 263–282

    Chapter  Google Scholar 

  24. Couto EGO, Cury MN, Bandeira E, Souza M, Granato ÍSC, Vidotti MS, Domingos Garbuglio D, Crossa J, Burgueño J, Fritsche-Neto R (2019) Effect of F1 and F2 generations on genetic variability and working steps of doubled haploid production in maize. PLoS One 14(11):e0224631. https://doi.org/10.1371/journal.pone.0224631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rotarenco V, Dicu G, Fuia S (2010) New inducers of maternal haploids in maize. Maize Genet Coop Newsl 84:21–22

    Google Scholar 

  26. Chaikam V, Martinez L, Melchinger AE, Schipprack W, Boddupalli PM (2016) Development and validation of red root marker-based haploid inducers in maize. Crop Sci 56(4):1678–1688. https://doi.org/10.2135/cropsci2015.10.0653

    Article  CAS  Google Scholar 

  27. Goff SA, Cone KC, Fromm ME (1991) Identification of functional domains in the maize transcriptional activator C1: comparison of wild-type and dominant inhibitor proteins. Genes Dev 5(2):298–309. https://doi.org/10.1101/gad.5.2.298

    Article  CAS  PubMed  Google Scholar 

  28. Semagn K, Babu R, Hearne S, Olsen M (2013) Single nucleotide polymorphism genotyping using Kompetitive Allele Specific PCR (KASP): overview of the technology and its application in crop improvement. Mol Breed 33(1):1–4. https://doi.org/10.1007/s11032-013-9917-x

    Article  CAS  Google Scholar 

  29. Coe EH Jr, Neuffer MG, Hoisington DA (1988) The genetics of corn. Corn Corn Improvement 18:81–258. https://doi.org/10.2134/agronmonogr18.3ed.c3

    Article  Google Scholar 

  30. Stinard PS, Sachs MM (2002) The identification and characterization of two dominant r1 haplotype-specific inhibitors of aleurone color in Zea mays. J Hered 93(6):421–428. https://doi.org/10.1093/jhered/93.6.421

    Article  CAS  PubMed  Google Scholar 

  31. Della Vedova CB, Lorbiecke R, Kirsch H, Schulte MB, Scheets K, Borchert LM, Scheffler BE, Wienand U, Cone KC, Birchler JA (2005) The dominant inhibitory chalcone synthase allele C2-Idf (inhibitor diffuse) from Zea mays (L.) acts via an endogenous RNA silencing mechanism. Genetics 170(4):1989–2002. https://doi.org/10.1534/genetics.105.043406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Franken P, Niesbach-Klösgen U, Weydemann U, Maréchal‐Drouard L, Saedler H, Wienand U (1991) The duplicated chalcone synthase genes C2 and Whp (white pollen) of Zea mays are independently regulated; evidence for translational control of Whp expression by the anthocyanin intensifying gene in. EMBO J 10(9):2605–2612. https://doi.org/10.1002/j.1460-2075.1991.tb07802.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Authors thank ICAR-IARI, New Delhi for providing the lab and field facilities. The support of AICRP centres and CIMMYT, Mexico for providing the inbred lines is also acknowledged.

Funding

The financial support of IARI, New Delhi and DBT sponsored project on ‘Development of locally adapted haploid inducer lines in maize through marker-assisted introgression of pollen-specific MATRILINEAL phospholipase gene’ [BT/PR25134/NER/95/1035/2017] is duly acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

Conduct of the experiment: NG; Primer designing and genotyping: RC; Generation of crosses: RUZ; Maintenance of inbreds and raising of field experiment: VM; Recording of anthocyanin score: RC, SD and GC; Manuscript writing: NG and FH; Editing of manuscript: ELD, VM, JM and AK; Designing of experiment: FH, KS and SC.

Corresponding author

Correspondence to Firoz Hossain.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 881.0 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gain, N., Chhabra, R., Chandra, S. et al. Variation in anthocyanin pigmentation by R1-navajo gene, development and validation of breeder-friendly markers specific to C1-Inhibitor locus for in-vivo haploid production in maize. Mol Biol Rep 50, 2221–2229 (2023). https://doi.org/10.1007/s11033-022-08214-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-08214-2

Keywords

Navigation