Skip to main content

Advertisement

Log in

Genetic diversity and population structure of Tunisian wild Kermes oak (Quercus coccifera L.): Assessment by ISSR molecular markers and implication for conservation

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

A Correction to this article was published on 02 July 2022

This article has been updated

Abstract

Background

In Tunisia, Kermes oak (Quercus coccifera L.) populations are severely destroyed due to deforestation. Nowadays, no preservation programs are attempted, yet, to conserve and promote the potential value of this resource. In this work, we assessed the genetic diversity of seven natural Tunisian populations of Q. coccifera from different bioclimates using Inter-Simple Sequence Repeats molecular markers. The distribution of the genetic diversity of Q. coccifera constitutes the pioneer step in the process of the conservation of the species.

Methods and Results

Nine selected ISSR markers were analyzed to characterize the genetic profiles of 70 different genotypes. The ISSR primers produced 64 loci ranging from 6 (UBC809 and UBC810) to 9 (UBC873) with an average of 7.11 at the species level. The average percentage of the polymorphic loci varied from 64.06% (Tabarka) to 76.56% (El Haouaria). The analyzed genotypes (70 individuals) revealed a high level of genetic diversity at species level (Na = 1.697; Ne = 1.517; He = 0.289; I = 0.418). The major proportion of the variation was attributable to individual differences within populations (76.07%). Analysis of molecular variance revealed also significant differentiation among all populations (ΦST = 0.245) and among populations within bioclimates (ΦSC = 0.233), even at a low scale space. The UPGMA and the PCoA analyses showed that most populations clustered independently to bioclimate or geographical distance indicating that genetic differentiation mainly occurs at local space scale due to genetic drift.

Conclusions

The in-situ conservation of the species should be maintained on natural populations as a forest genetic resources. Moreover, ex-situ conservation should involve the selection of genotypes with extensive collection of seeds and cuttings from different populations of the target area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Change history

References

  1. Belahbib N, Ouassou A, Dahmani J, Douira A (2004) Contribution à l’étude de l’introgression génétique entre Quercus suber L. et Q. rotundifolia (Lamk.) Trabut au Maroc par l’utilisation des marqueurs microsatellites. Bulletin de l’institut scientifique, Rabat, Sect Sci de la vie, 26: 31–34

  2. Hasnaoui B (1992) Chênaies du nord de la Tunisie: écologie et régénération. Thèse de doctorat en Sciences naturelles. Université De Provence-Aix-Marseille I, p 202

  3. Belahbib N, Pemonge MH, Ouassou A, Sbay H, Kremer A, Petit RJ (2001) Frequent cytoplasmic exchanges between oak species that are not closely related: Quercus suber and Q. ilex in Morocco. Mol Ecol 10:2003–2012

    Article  CAS  PubMed  Google Scholar 

  4. Mhamdi S, Brendel O, Montpied P, Ghouil-Amimi H, Hasnaoui I, Dreyer E (2013) Leaf morphology displays no detectable spatial organization in the relict Quercus afares Pomel compared to the co-occurring parental species Q. canariensis Willd. and Q. suber L. Ann For Sci 70:675–684

    Article  Google Scholar 

  5. Ortego J, Bonal R (2010) Natural hybridization between kermes (Quercus coccifera L.) and holm oaks (Q. ilex L.) revealed by microsatellite markers. Plant Biol 12:234–238

    Article  PubMed  Google Scholar 

  6. Toumi L, Lumaret R (2010) Genetic variation and evolutionary history of holly oak: a circum-Mediterranean species-complex [Quercus coccifera L./Q. calliprinos (Webb) Holmboe, Fagaceae]. Plant Sys Evol 290:159–171

    Article  Google Scholar 

  7. Laakili A, Belkadi B, Medraoui L, Alami M, Yatrib C, Pakhrou O, Makhloufi M, El Antry S, Laamarti A, Filali-Maltouf A (2018) Diversity and spatial genetic structure of natural Moroccan Quercus suber L. assessed by ISSR markers for conservation. Physiol Mol Biol Plants 24:643–654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sakka H, Baraket G, Abdessemad A, Tounsi K, Ksontini M, Salhhi-Hannachi A (2015) Molecular phylogeny and genetic diversity of Tunisian Quercus species using chloroplast DNA CAPS markers. Biochem Syst Ecol 11:1157–1164

    Google Scholar 

  9. Arbez M, Lacaze JF (1998) Station de Recherches Forestières. Bureau Des Ressources Génétiques. Les ressources génétiques forestières en France 2. INRA Editions, Paris, pp 2–12

    Google Scholar 

  10. Nabli MA (1995) Essai de synthèse sur la végétation et la phyto-écologie tunisiennes II et III. Le milieu physique et la végétation. Ecologie végétale appliquée

  11. Ben ElHadj Ali I, Guetat A, Boussaid M (2011) Genetic diversity and structure of wild Tunisian Thymus capitatus (L.) Hoffm. et Link. (Lamiaceae) assessed using isozyme markers. Afr J Ecol 50:140–151

    Article  Google Scholar 

  12. Medrano M, Herrera CM (2008) Geographical structuring of genetic diversity across the whole distribution range of Narcissus longispathus, a habitat-specialist, Mediterranean Narrow Endemic. Ann Bot 102:183–194

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ellstrand NC, Elam DR (1993) Population genetic consequences of small population size: implications for plant conservation. Annual Rev Ecol Syst 24:217–242

    Article  Google Scholar 

  14. Rhimi A, Mnasri S, Ben Ayed R, Ben ElHadj Ali I, Hjaoujia S, Boussaid M (2019) Genetic relationships among subspecies of Capparis spinosa L. from Tunisia by using ISSR markers. Mol Biol Rep 46:2209–2219

    Article  CAS  PubMed  Google Scholar 

  15. Trieu LN, Mien NT, Tien TV, Ket NV (2016) Genetic diversity of Panax stipuleanatus Tsai in North Vietnam detected by inter simple sequence repeat (ISSR) markers. Biot Biotechnol Equip 30:506–511

    Article  CAS  Google Scholar 

  16. Younsi F, Rahali N, Mehdi S, Boussaid M, Messaoud C (2018) Relationship between chemotypic and genetic diversity of natural populations of Artemisia herba-alba Asso growing wild in Tunisia. Phytochemistry 148:48–56

    Article  CAS  PubMed  Google Scholar 

  17. Zietkiewicz E, Rafalski A, Labuda D (1994) Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics 20:176–183

    Article  CAS  PubMed  Google Scholar 

  18. Ansari SA, Narayanan C, Wali SA et al (2012) ISSR markers for analysis of molecular diversity and genetic structure of Indian teak (Tectona grandis Lf) populations. Ann For Res 55:11–23

    Google Scholar 

  19. Labra M, Grassi F, Sgorbati S, Ferrari C (2006) Distribution of genetic variability in southern populations of Scots pine (Pinus sylvestris L.) from the Alps to the Apennines. Flora Morphol Distrib Funct Ecol Plants 201:468–476

    Article  Google Scholar 

  20. Pakhrou O, Medraoui L, Yatrib C, Alami M, Filali-maltouf A, Belkadi B (2017) Assessment of genetic diversity and population structure of an endemic Moroccan tree (Argania spinosa L.) based in IRAP and ISSR markers and implications for conservation. Physiol Mol Biol 23:651–661

    Article  CAS  Google Scholar 

  21. Patel DM, Fougat RS, Sakure AA et al (2016) Detection of genetic variation in sandalwood using various DNA markers. Biotech 6:1–11

    Google Scholar 

  22. Emberger L (1966) Une classification biogéographique des climats. Recherches et Travaux des Laboratoires de Géologie, Botanique et Zoologie. Faculté des Sciences Montpellier 7:1–43

    Google Scholar 

  23. Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemistry 19:11–15

    Google Scholar 

  24. Roldan-Ruiz I, Dendauw J, Bockstaele EV, Depicker A, Loose MD (2000) AFLP markers reveal high polymorphic rates in ryegrasses (Lolium spp.). Mol Breed 6:125–134

    Article  CAS  Google Scholar 

  25. Powell W, Morgante M, Andre C, Hanafey M, Vogel J, Tingey S, Rafalski A (1996) The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol Breed 2:225–238

    Article  CAS  Google Scholar 

  26. Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA 70:3321–3323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yeh F, Yang R, Boyle T (1999) Popgene, Version 1.31. Microsoft Window-Based Freeware for Population Genetic Analysis. University of Alberta, Edmonton

    Google Scholar 

  28. Saitou N, Nei M (1987) The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  29. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular evolutionary genetics analysis version 6. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hampl V, Pavlcek A, Flegr J (2001) Construction and bootstrap analysis of DNA? ngerprinting-based phylogenetic trees with the freeware program FreeTree: application to trichomonad parasites. Int J Syst Evol Microb 51:731–735

    Article  CAS  Google Scholar 

  31. Nei M, Li WH (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceeding of the national academy of sciences of the USA 76: 5269–5273

  32. Kovach WL (1999) MVSP-A Multi Variante Statistical Package for Windows, version 3.1. Kovach Computing Services, Pentraeth, Wales, UK

    Google Scholar 

  33. Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lynch MB, Milligan G (1994) Analysis of population genetic structure with RAPD markers. Mol Ecol 3:91–99

    Article  CAS  PubMed  Google Scholar 

  35. Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220

    CAS  PubMed  Google Scholar 

  36. Raina SN, Rani V, Kojima T, Ogihara Y, Singh KP, Devarumath RM (2001) RAPD and ISSR fingerprints as useful genetic markers for analysis of genetic diversity, varietal identification, and phylogenetic relationships in peanut (Arachis hypogaea) cultivars and wild species. Genome 44:763–772

    Article  CAS  PubMed  Google Scholar 

  37. Lopez-Aljorna A, Bueno MA, Aguinagalde I, Martin JP (2007) Fingerprinting and genetic variability in cork oak (Quercus suber L.) elite trees using ISSR and SSR markers. Ann Folynchrest Sci 64:773–777

    Article  CAS  Google Scholar 

  38. Ben ElHadj Ali I, Guetat A, Boussaid M (2012) Genetic diversity of North African Thymus algeriensis in Tunisia: Population structure and implication for conservation. Dendrobiology 67:67–77

    Google Scholar 

  39. Degen B, Yanbaev Y, Ianbaev R, Bakhtina S, Sultanova R (2021) When does habitat fragmentation lead to changes in populations gene pool of pedunculate oak (Quercus robur L.)? For Ecol Manage 499:119617

    Article  Google Scholar 

  40. Singh A, Samant SS, Naithanit S (2021) Population ecology and habitat suitability modelling of Quercus semecarpifolia Sm. in the sub-alpine ecosystem of Great Himalayan National Park, north-western Himalaya, India. South Afr J Bot 141:158–170

    Article  Google Scholar 

  41. Sampaio T, Gonçalves E, Faria C, Almeida MH (2021) Genetic variation among and within Quercus suber L. populations in survival, growth, vigor and plant architecture traits. For Ecol Manage 483:118715

    Article  Google Scholar 

  42. Nybom H (2004) Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plant. Mole Ecol 13:1143–1155

    Article  CAS  Google Scholar 

  43. Audigeos D, Brousseau L, Traissac S et al (2013) Molecular divergence in tropical tree populations occupying environmental mosaics. J Evol Biol 26:529–544

    Article  CAS  PubMed  Google Scholar 

  44. Hamrick J, Murawski D, Nason J (1993) The influence of seed dispersal mechanisms on the genetic structure of tropical tree populations. In: Fleming T, Estrada A (eds) Frugivory and seed dispersal: ecological and evolutionary aspects. Kluwer academic publishers: Belgium 281–297

  45. Takrouni MM, Boussaid M (2010) Genetic diversity and population’s structure in Tunisian strawberry tree (Arbutus unedo L.). Scientia Hortic 126:330–337

    Article  Google Scholar 

  46. Coart E, Lamote V, De Loose M, Van Bockstaele E, Lootens P, Rpldan-Ruiz L (2002) AFLP markers demonstrate local genetic differentiation between two indigenous oak species [Quercus robur L. and Quercus petraea (Matt.) Liebl.] in Flemish populations. Theo Applied Genetics 105: 431–439

  47. Coelho AC, Lima MB, Neves D, Cravador A (2006) Genetic diversity of two evergreen Oaks [Quercus suber (L) and Quercus ilex subsp rotundifolia (Lam)] in Portugal using AFLP markers. Silvae Genetica 55:105–118

    Article  Google Scholar 

  48. Meena B, Singh N, Mahar KS, Sharma YK, Tikam SR (2019) Molecular analysis of genetic diversity and population genetic structure in Ephedra foliata: an endemic and threatened plant species of arid and semi-arid regions of India. Physiol Mol Biol Plants 25:753–764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Fischer M, Husi R, Prati D, Peintinger M, Van Kleunen M, Schmid B (2000) RAPD variation among and within small and large populations of the rare clonal plant Ranunculus reptans (Ranunculaceae). Am J Bot 87:1128–1137

    Article  CAS  PubMed  Google Scholar 

  50. Opdam P, Wascher D (2004) Climate change meets habitat fragmentation: linking landscape and biogeographical scale levels in research and conservation. Biol Cons 117:285–297

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by a grant of the Ministry of Scientific Research and Technology and the National Institute of Applied Science and Technology (Research grant UR 17ES22). We wish to express our thanks to the Laboratory of Plant Biotechnology, National Gene Bank of Tunisia (NGBT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imen Ben ElHadj Ali.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Supplementary Material 2

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Flihi, J., Rhimi, A., Yangui, I. et al. Genetic diversity and population structure of Tunisian wild Kermes oak (Quercus coccifera L.): Assessment by ISSR molecular markers and implication for conservation. Mol Biol Rep 49, 6215–6224 (2022). https://doi.org/10.1007/s11033-022-07417-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07417-x

Keywords

Navigation