Skip to main content
Log in

Genetic variation and evolutionary history of holly oak: a circum-Mediterranean species-complex [Quercus coccifera L./Q. calliprinos (Webb) Holmboe, Fagaceae]

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Holly oak is the only evergreen oak possessing a circum-Mediterranean range; it has two predominant morphological forms, calliprinos and coccifera, described in the eastern and western Mediterranean Basin respectively. The concordance of allozyme and morphotype variation was analysed in the whole holly oak range, and the most plausible historical events responsible for the current geographic pattern of genetic variation were investigated. Individuals from 24 populations were scored for allozyme variation at seven polymorphic loci. Multi-locus genotypes were analysed by using a correspondence analysis (CA) and a Bayesian clustering approach. The relative positions of the populations were obtained from multi-dimensional scaling coupled with UPGMA treatment. A continuous genotype distribution was observed in the CA, and two groups were identified using the Bayesian approach. With a 0.95 threshold, 66 and 69% of the individuals showing the calliprinos and the coccifera morphotypes respectively were assigned to the corresponding genetic groups, which differed by private alleles. As compared to coccifera, the genetic group calliprinos was characterized by higher allelic richness and a strong geographical genetic structure. In agreement with fossil records, the most parsimonious explanation for lack of geographical structure in coccifera is a substantial regression of holly oak in the western Mediterranean Basin during the glaciations and a fast westward post-glacial expansion of coccifera populations, probably from Greece. Two population groups were obtained from the scaling/UPGMA treatment. One included all of the calliprinos populations and a Greek coccifera population, suggesting that the two morphotypes are closely related genetically and constitute two components of the same species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Albaladejo RG, Aparicio A (2007) Population genetic structure and hybridization patterns in the Mediterranean endemics Phlomis lychnitis and P. crinita (Lamiaceae). Ann Bot 100:735–746

    Article  CAS  PubMed  Google Scholar 

  • Anon. (1989) Biomeco (version 3.7). Groupe de biométrie, Centre d’Ecologie Fonctionnelle et Evolutive. CNRS, Montpellier, France

  • Arnold ML (2006) Evolution through genetic exchange. Oxford University Press, New York

  • Aronson J, Blondel J (1999) Biology and wildlife of the Mediterranean Region. Oxford University Press, New York

  • Balakrishnan V, Shangvi LD (1968) Distance between populations on the basis of attribute data. Biometrics 24:859–865

    Article  Google Scholar 

  • Belkhir K, Borsa P, Chikli L, Raufaste N, Bonhomme F (2001) GENETIX, logiciel sous Windows TM pour la génétique des populations. Laboratoire genome, populations, interactions CNRS UMR 5000, UMII, Montpellier

  • Benabid A (1984) Étude phytoécologique des peuplements forestiers et pré-forestiers du Rif centro-occidental (Maroc). Trav Instit Sci Rabat sér Bot 34:1–64

    Google Scholar 

  • Benzecri JP (1973) L’analyse des données II. L’analyse des correspondances. Dunod, Paris

  • Bottema S, Van Zeist W (1981) Palynological evidence for the climatic history of the near east, 50,000–6,000 BP. Coll Internat CNRS 598:111–132

    Google Scholar 

  • Browicz K (1986) Quercus aucheri Jaub. et Spach and its range of occurrence. Arbor Kórnickie Rocznik 31:3–11

    Google Scholar 

  • Brullo S, Marcenò C (1985) Contributo alla conoscenza della classe Quercetea ilicis in Sicilia. Notiz Fitosociol 19:183–229

    Google Scholar 

  • Camus A (1938) Les chênes, monographie du genre Quercus, vol 3. Lechevallier, Paris

  • Catarino FM, Correia OCA, Correia AIVD (1982) Structure and dynamics of Serra da Arrábida Mediterranean vegetation. Ecol Medit 8:203–222

    Google Scholar 

  • Davis PH (1982) Flora of Turkey and the east Aegean Islands. University Press, Edinburgh

  • El Hamrouni A (1992) Végétation forestière et préforestière de Tunisie : typologie et éléments de gestion. PhD Thesis, Université d’Aix-Marseille III, Aix-en-Provence

  • Elenga H, Peyron O, Bonnefille R, Jolly D, Cheddadi R, Guiot J, Andrieu V, Bottema S, Bucher G, de Beaulieu JL, Hamilton AC, Maley J, Marchant R, Perez-Obiol R, Reille M, Riollet G, Scott L, Straka H, Taylor D, Van Campo E, Vincens A, Laarif F, Jonson H (2000) Pollen-based biome reconstruction for southern Europe and Africa 18,000 year BP. J Biogeogr 27:621–634

    Article  Google Scholar 

  • Escoufier Y (1975) Le positionnement multidimentional. Rev Stat Appl 4:5–14

    Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Hamrick JL (1983) The distribution of genetic variation within and among natural plant populations. In: Schonewald-Cox CM, Chambers SM, MacBryde B, Thomas WL (eds) Genetics and conservation: a reference for managing wild animal and plant populations. Cummings, Menlo Park, pp 335–348

  • Ikeda H, Setoguchi H (2006) Phylogeography of Arcterica nana (Ericaceae) suggests another range expansion history of Japanese alpine plants. J Plant Res 119:489–495

    Article  PubMed  Google Scholar 

  • Ikeda H, Senni K, Fujii N, Setoguchi H (2008) Post-glacial range fragmentation is responsible for current distribution of Potentilla matsumurae Th. Wolf (Rosaceae) in the Japanese archipelago. J Biogeogr 35:791–800

    Article  Google Scholar 

  • Kvacek Z, Walther H (1989) Paleobotanical studies in Fagaceae of the European Tertiary. Plant Syst Evol 162:213–229

    Article  Google Scholar 

  • Lagercrantz U, Ryman N (1990) Genetic structure of Norway spruce (Picea abies): concordance of morphological and allozymic variation. Evolution 44:38–53

    Article  Google Scholar 

  • Lebreton P, Barbero M, Quézel P (2001) Contribution morphométrique et biochimique à la structuration et à la systématique du complexe spécifique chêne vert Quercus ilex L. Acta Bot Gal 148:289–317

    CAS  Google Scholar 

  • López de Heredia U, Carrión JS, Jiménez P, Collada C, Gil L (2007a) Molecular and palaeobotanical evidence for multiple glacial refugia for evergreen oaks on the Iberian Peninsula. J Biogeogr 34:1505–1517

    Article  Google Scholar 

  • López de Heredia U, Jiménez P, Collada C et al (2007b) Multi-marker phylogeny of three evergreen oaks reveal vicariant patterns in the Western Mediterranean. Taxon 56:1209–1220

    Article  Google Scholar 

  • Lumaret R, Mir C, Michaud H, Raynal V (2002) Phylogeographical variation of chloroplast DNA in holm oak (Quercus ilex L.). Mol Ecol 11:2327–2336

    Article  CAS  PubMed  Google Scholar 

  • Lumaret R, Ouazzani N, Michaud H, Vivier G, Deguilloux MF, Di Giusto F (2004) Allozyme variation of oleaster populations (wild olive tree) (Olea europaea L.) in the Mediterranean Basin. Heredity 92:343–351

    Article  CAS  PubMed  Google Scholar 

  • Maire R (1961) Flore de l’Afrique du Nord (Maroc, Algérie, Tunisie, Tripolitaine, Cyrénaïque et Sahara). Lechevallier, Paris

  • Michaud H, Toumi L, Lumaret R, Li TX, Romane F, Di Giusto F (1995) Effect of geographical discontinuity on genetic variation in Quercus ilex L. (holm oak). Evidence from enzyme polymorphism. Heredity 74:590–606

    CAS  Google Scholar 

  • Mir C, Toumi L, Jarne P, Sarda V, Di Giusto F, Lumaret R (2006) Endemic North African Quercus afares Pomel originates from hybridisation between two genetically very distant oak species (Q. suber L. and Q. canariensis Wild.): evidence from nuclear and cytoplasmic markers. Heredity 96:175–184

    Article  CAS  PubMed  Google Scholar 

  • Mitton JB (1992) The dynamic systems of conifers. New For 6:197–216

    Google Scholar 

  • Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590

    CAS  PubMed  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

  • Neophytou C, Palli G, Dounavi A, Aravanopoulos F (2007) Morphological differentiation and hybridization between Quercus alnifolia Poech and Quercus coccifera L. (Fagaceae) in Cyprus. Silvae Genet 56:271–277

    Google Scholar 

  • Palamarev E (1989) Paleobotanical evidences for the tertiary history and origin of the Mediterranean sclerophyll dendroflora. Plant Syst Evol 162:93–107

    Article  Google Scholar 

  • Palamarev E, Petrokova A (1987) The Sarmatian macroflora of Bulgaria. Foss Bulg 8:3–275

    Google Scholar 

  • Peyron O, Guiot J, Cheddadi R et al (1998) Climatic reconstruction in Europe for 18,000 years BP from pollen data. Quatern Res 49:183–196

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  Google Scholar 

  • Quézel P, Médail F (2003) Ecologie et biogéographie des forêts du basin méditerranéen. Elsevier, Paris

  • Rehfeldt GE, Ying CC, Spittlehouse DL, Hamilton DA (1999) Genetic responses to climate in Pinus contorta: niche breadth, climate change and reforestation. Ecol Monogr 69:375–407

    Google Scholar 

  • Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145:1219–1228

    CAS  PubMed  Google Scholar 

  • Roux M (1985) Algorithmes de classification, méthodes et programmes. Masson, Paris

  • Rubio de Casas R, Cano E, Balaguer L et al (2007) Taxonomic identity of Quercus coccifera L. in the Iberian Peninsula is maintained in spite of widespread hybridisation, as revealed by morphological, ISSR and ITS sequence data. Flora 202:488–499

    Google Scholar 

  • Rubio de Casas R, Vargas P, Pérez-Corona E et al (2008) Variation in sclerophylly among Iberian populations of Quercus coccifera L. is associated with genetic differentiation across contrasting environments. Plant Biol 11:464–472

    Article  PubMed  Google Scholar 

  • Schaal BA, Hayworth DA, Olsen M, Rauscher JT, Smith WA (1998) Phylogeographic studies in plants: problems and prospects. Mol Ecol 7:465–474

    Article  Google Scholar 

  • Schwarz O (1936) Entwurf eines natürlichen System der culpuliferen und der Gattung Quercus L. Notiz Bot Gart Berlin 13:1–22

    Google Scholar 

  • Shiller G, Conkle MT, Grunwald C (1986) Local differentiation among Mediterranean populations of Aleppo pine in their isozymes. Silvae Genet 35:11–19

    Google Scholar 

  • Toumi L (1995) Etude de la structure génétique et introgressions éventuelles chez les chênes sclérophylles Méditerranéens à l’aide de marqueurs alloenzymatiques. PhD Thesis, University of Aix-Marseille, Aix-en-Provence

  • Toumi L, Lumaret R (1998) Allozyme variation in cork oak (Quercus suber L.): the role of phylogeography and genetic introgression by other Mediterranean oak species and human activities. Theor Appl Genet 97:647–656

    Article  CAS  Google Scholar 

  • Toumi L, Lumaret R (2001) Allozyme characterisation of four Mediterranean evergreen oak species. Biochem Syst Ecol 29:799–817

    Article  CAS  PubMed  Google Scholar 

  • Tutin TG, Burges NA, Chater AO, Edmonson JR, Heywood VH, Moore DM et al (1993) Flora Europaea. Cambridge University Press, London

  • Van Zeist W, Woldring H (1980) Holocene vegetation and climate of northwestern Syria. Palaeohistoria 22:111–125

    Google Scholar 

  • Vendramin GG, Fady B, Santiago C et al (2008) Genetically depauperate but widespread: the case of an emblematic Mediterranean pine. Evolution 62:680–688

    Article  PubMed  Google Scholar 

  • Walter R, Epperson BK (2001) Geographic patterns of genetic variation in Pinus resinosa: area of greatest diversity is not the origin of postglacial populations. Mol Ecol 10:103–111

    Article  CAS  PubMed  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • Wheeler NC, Critchfield WB (1985) The distribution and botanical characteristics of lodgepole pine: biogeographic and management implications. In: Baumgartner DM, Krebill RG, Anort JT, Weetmen GF (eds) Lodgepole pine: the species and its management. Cooperative Extension Service, Washington State University, Pullman, pp 1–13

    Google Scholar 

  • Zohary M (1961) On the oak species of the Middle East. Bull Res Counc Isr 9D:161–186

    Google Scholar 

Download references

Acknowledgments

We are grateful to C. Debain, S. Dettori, A. Istanbouli, S. Kandulis, S. Kiriakalis, A. Martin, H. Michaud and B. Noitsakis for their assistance in collecting plant material. We thank J. Aronson, A. Kirk and K. G. Wardhaugh for making useful suggestions to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lamjed Toumi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toumi, L., Lumaret, R. Genetic variation and evolutionary history of holly oak: a circum-Mediterranean species-complex [Quercus coccifera L./Q. calliprinos (Webb) Holmboe, Fagaceae]. Plant Syst Evol 290, 159–171 (2010). https://doi.org/10.1007/s00606-010-0358-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-010-0358-2

Keywords

Navigation