Skip to main content

Advertisement

Log in

Kinases and therapeutics in pathogen mediated gastric cancer

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Introduction

Many pathogens have coexisted with humans for millennia and can cause chronic inflammation which is the cause of gastritis. Gastric cancer (GC) is associated with 8.8% of cancer related deaths, making it one of the leading causes of cancer related deaths worldwide. This review is intended to give brief information about Helicobacter pylori (H. pylori), Epstein–Barr virus (EBV), human cytomegalovirus (HCMV) role in GC and associated kinases. These organisms can trigger multiple cellular pathways aiming for unnatural cellular proliferation, apoptosis, migration and inflammatory response. Kinases also can activate and deactivate the signalling leading to aforementioned pathways. Therefore, studying kinases is inevitable.

Material and methods

This review is the comprehensive collection of information from different data sources such as journals, book, book chapters and verified online information.

Conclusion

Kinase amplifications could be used as diagnostic, prognostic, and predictive biomarkers in various cancer types. Hence targeting kinase and related signalling molecules could be considered as a potential approach to prevent cancer through these organisms. Here we summarize the brief information about the role of kinases, signalling and their therapeutics in GC concerning H. pylori, EBV and HCMV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ARID1A:

AT-rich interactive domain-containing protein 1A

Bcl-2:

B-Cell CLL/Lymphoma 2

BabA:

Blood group antigen binding adhesin A

cas-9:

Caspase-3 (cas-3), caspase-9

CCDC151:

Coiled-coil domain containing 151

CHRNB2:

Cholinergic receptor nicotinic beta 2 subunit

CIMP:

Concordant methylation of multiple genes/loci

CLTs:

Cytomegalovirus latency-associated transcripts

CagA:

Cytotoxin associated gene A

cagPAI:

Cytotoxin-associated genes pathogenicity island

COX-2:

Cyclooxygenase-2

CTLs:

Cytotoxic T cells

EBV:

Epstein–Barr virus

EBVaGC:

EBV-associated GC

EBNA-1:

EBV nuclear antigen-1

EPHA4:

EPH receptor A4

EGF:

Epidermal growth factor

ERBB2:

Erb-B2 receptor tyrosine kinase

ERBB4:

Receptor tyrosine-protein kinase erbB-4 precursor

ERK1/2:

Extracellular signal-regulated kinase ½

FGFR2:

Fibroblast growth factor receptor 2

leb:

Fucosylated lewisb

GC:

Gastric cancer

GMPR2:

Guanosine monophosphate reductase 2

HSP-70:

Heat shock protein-70

H. pylori :

Helicobacter pylori

HDGFRP2:

Hepatoma-derived growth factor-related protein 2 isoform 1

LMP:

Latent membrane proteins

IAPs:

Inhibitors of apoptosis

HCMV:

Human cytomegalovirus

HER2:

Human Epidermal growth factor Receptor 2

IHH:

Indian hedgehog homolog

ITK:

Inducible T-cell KINASE

IARC:

International Agency for Research on Cancer

AP-1:

Jun/Activator protein 1

mTOR:

Mammalian target of rapamycin

MMPs:

Matrix metalloproteases

Met:

Mesenchymal-epithelial transition factor

MLH1:

MutL Homolog 1

nRTK:

Non-receptor tyrosine kinases

NFκB:

Nuclear Factor kappa-light-chain-enhancer of activated B cells

PAK1:

P21 (RAC1) Activated Kinase 1

PAK2:

PAK2 Gene—P21 (RAC1) Activated Kinase 2

PLCγ:

Phospholipase Cγ

PTEN:

Phosphatase and Tensin Homolog

PIK3CA:

Phosphatidylinositol 4,5-bisphosphate 3-Kinase Catalytic subunit Alpha isoform

PI3K:

Phosphatidylinositol 3-Kinase/Akt

PD-1:

Programmed cell death 1

PGE2:

Prostaglandin E2

PML:

Progressive multifocal leukoencephalopathy

Src:

Proto-oncogene tyrosine-protein kinase

RTK:

Receptor tyrosine kinases

RPTP:

Receptor protein tyrosine phosphatase

MEK:

Ras/Raf/Mitogen-activated protein kinase/ERK kinase

ERK:

Extracellular-signal-regulated kinase

SSTR1:

Somatostatin Receptor 1

SHP2:

Src homology region 2

STAD:

Stomach adenocarcinoma

TYK2:

Tyrosine kinase 2

VacA:

Vacuolating Cytotoxin A

VSTM2L:

V-set and transmembrane domain containing 2 like

VEGFR:

VEGF receptor

HAUSP:

Ubiquitin-specific protease USP7

ZEB1:

Zinc finger E-box-binding homeobox 1

TP53:

Tumour protein P53

References

  1. Cicenas J, Zalyte E, Bairoch A, Gaudet P (2018) Kinases and cancer. Cancers (Basel) 10:63

    Google Scholar 

  2. Chichirau BE, Diechler S, Posselt G, Wessler S (2019) Tyrosine kinases in Helicobacter pylori infections and gastric cancer. Toxins (Basel). 11:591

    CAS  PubMed Central  Google Scholar 

  3. Kamran M, Long Z-J, Xu D, Lv S-S, Liu B, Wang C-L et al (2017) Aurora kinase A regulates survivin stability through targeting FBXL7 in gastric cancer drug resistance and prognosis. Oncogenesis 6:e298–e298

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Thrift AP, El-Serag HB (2020) Burden of gastric cancer. Clin Gastroenterol Hepatol 18:534–542

    PubMed  Google Scholar 

  5. Sitarz R, Skierucha M, Mielko J, Offerhaus GJA, Maciejewski R, Polkowski WP (2018) Gastric cancer: epidemiology, prevention, classification, and treatment. Cancer Manag Res 10:239–248

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Singh S, Jha HC (2017) Status of Epstein-Barr virus coinfection with Helicobacter pylori in gastric cancer. J Oncol. https://doi.org/10.1155/2017/3456264

    Article  PubMed  PubMed Central  Google Scholar 

  7. Correa P, Piazuelo MB (2011) Helicobacter pylori infection and gastric adenocarcinoma. US Gastroenterol Hepatol Rev 7:59

    PubMed  PubMed Central  Google Scholar 

  8. Liu D, Ma X, Yang F, Xiao D, Jia Y, Wang Y (2020) Discovery and validation of methylated-differentially expressed genes in Helicobacter pylori-induced gastric cancer. Cancer Gene Ther 27:473–485

    CAS  PubMed  Google Scholar 

  9. Díaz P, Valenzuela Valderrama M, Bravo J, Quest AFG (2018) Helicobacter pylori and gastric cancer: adaptive cellular mechanisms involved in disease progression. Front Microbiol 9:5

    PubMed  PubMed Central  Google Scholar 

  10. Kashyap D, Baral B, Verma TP, Sonkar C, Chatterji D, Jain AK et al (2020) Oral rinses in growth inhibition and treatment of Helicobacter pylori infection. BMC Microbiol 20:45

    PubMed  PubMed Central  Google Scholar 

  11. Eichelberg MR, Welch R, Guidry JT, Ali A, Ohashi M, Makielski KR et al (2019) Epstein-Barr virus infection promotes epithelial cell growth by attenuating differentiation-dependent exit from the cell cycle. MBio 10:e01332

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Yu J, Liang Q, Wang J, Wang K, Gao J, Zhang J et al (2017) REC8 functions as a tumor suppressor and is epigenetically downregulated in gastric cancer, especially in EBV-positive subtype. Oncogene 36:182–193

    CAS  PubMed  Google Scholar 

  13. Fattahi S, Nikbakhsh N, Taheri H, Ghadami E, Kosari-Monfared M, Amirbozorgi G et al (2018) Prevalence of multiple infections and the risk of gastric adenocarcinoma development at earlier age. Diagn Microbiol Infect Dis 92:62–68

    PubMed  Google Scholar 

  14. Falush D (2003) Traces of human migrations in Helicobacter pylori populations. Science 299:1582–1585

    CAS  PubMed  Google Scholar 

  15. Nomura A, Stemmermann GN, Chyou P-H, Kato I, Perez-Perez GI, Blaser MJ (1991) Helicobacter pylori infection and gastric carcinoma among Japanese Americans in Hawaii. N Engl J Med 325:1132–1136

    CAS  PubMed  Google Scholar 

  16. Chmiela M, Karwowska Z, Gonciarz W, Allushi B, Stączek P (2017) Host pathogen interactions in Helicobacter pylori related gastric cancer. World J Gastroenterol 23:1521–1540

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Yılmaz N, Koruk-Özer M (2019) The prevalence of Helicobacter pylori babA, homB, aspA, and sabA genes and its relationship with clinical outcomes in Turkey. Can J Gastroenterol Hepatol. https://doi.org/10.1155/2019/1271872

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ilver D, Arnqvist A, Ögren J, Frick I-M, Kersulyte D, Incecik ET et al (1998) Helicobacter pylori adhesin binding fucosylated Histo-Blood Group antigens revealed by retagging. Science 279:373–377

    CAS  PubMed  Google Scholar 

  19. Kable ME, Hansen LM, Styer CM, Deck SL, Rakhimova O, Shevtsova A et al (2017) Host determinants of expression of the Helicobacter pylori BabA adhesin. Sci Rep 7:46499

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Bernard MD, Arico B, Papini E, Rizzuto R, Grandi G, Rappuoli R et al (1997) Helicobacter pylori toxin VacA induces vacuole formation by acting in the cell cytosol. Mol Microbiol 26:665–674

    PubMed  Google Scholar 

  21. Foegeding NJ, Caston RR, McClain MS, Ohi MD, Cover TL (2016) An overview of Helicobacter pylori VacA toxin biology. Toxins 8:173

    PubMed Central  Google Scholar 

  22. Zhu P, Xue J, Zhang Z, Jia Y, Tong Y, Han D et al (2017) Helicobacter pylori VacA induces autophagic cell death in gastric epithelial cells via the endoplasmic reticulum stress pathway. Cell Death Dis 8:1–12

    Google Scholar 

  23. Cover TL, Blanke SR (2005) Helicobacter pylori VacA, a paradigm for toxin multifunctionality. Nat Rev Microbiol 3:320–332

    CAS  PubMed  Google Scholar 

  24. Šterbenc A, Jarc E, Poljak M, Homan M (2019) Helicobacter pylori virulence genes. World J Gastroenterol 25:4870–4884

    PubMed  PubMed Central  Google Scholar 

  25. Richardson CJ, Gao Q, Mitsopoulous C, Zvelebil M, Pearl LH, Pearl FMG (2009) MoKCa database—mutations of kinases in cancer. Nucleic Acids Res 37:D824–D831

    CAS  PubMed  Google Scholar 

  26. Tomb J-F, White O, Kerlavage AR, Clayton RA, Sutton GG, Fleischmann RD et al (1997) Erratum: the complete genome sequence of the gastric pathogen Helicobacter pylori. Nature 389:412–412

    CAS  Google Scholar 

  27. Alm RA, Trust TJ (1999) Analysis of the genetic diversity of Helicobacter pylori: the tale of two genomes. J Mol Med 77:834–846

    CAS  PubMed  Google Scholar 

  28. Chen S-Y, Zhang R-G, Duan G-C (2016) Pathogenic mechanisms of the oncoprotein CagA in H. pylori-induced gastric cancer (Review). Oncol Rep 36:3087–3094

    PubMed  Google Scholar 

  29. Liu X, Ji Q, Zhang C, Liu X, Liu Y, Liu N et al (2017) miR-30a acts as a tumor suppressor by double-targeting COX-2 and BCL9 in H. pylori gastric cancer models. Sci Rep 7:7113

    PubMed  PubMed Central  Google Scholar 

  30. Liu N, Zhou N, Chai N, Liu X, Jiang H, Wu Q et al (2016) Helicobacter pylori promotes angiogenesis depending on Wnt/beta-catenin-mediated vascular endothelial growth factor via the cyclooxygenase-2 pathway in gastric cancer. BMC Cancer 16:321

    PubMed  PubMed Central  Google Scholar 

  31. Hu Y, He C, Liu J-P, Li N-S, Peng C, Yang-Ou Y-B et al (2018) Analysis of key genes and signaling pathways involved in Helicobacter pylori-associated gastric cancer based on The Cancer Genome Atlas database and RNA sequencing data. Helicobacter 23:e12530

    PubMed  Google Scholar 

  32. Sasaki S, Nishikawa J, Sakai K, Iizasa H, Yoshiyama H, Yanagihara M et al (2019) EBV-associated gastric cancer evades T-cell immunity by PD-1/PD-L1 interactions. Gastric Cancer 22:486–496

    CAS  PubMed  Google Scholar 

  33. Jha HC, Pei Y, Robertson ES (2016) Epstein-Barr virus: diseases linked to infection and transformation. Front Microbiol 7:1602. https://doi.org/10.3389/fmicb.2016.01602

    Article  PubMed  PubMed Central  Google Scholar 

  34. Young LS, Arrand JR, Murray PG (2007) EBV gene expression and regulation. In: Arvin A, Campadelli-Fiume G, Mocarski E, Moore PS, Roizman B, Whitley R et al (eds) Human herpesviruses: biology, therapy, and immunoprophylaxis. Cambridge University Press, Cambridge

    Google Scholar 

  35. Jha HC, Yang K, El-Naccache DW, Sun Z, Robertson ES (2015) EBNA3C regulates p53 through induction of Aurora kinase B. Oncotarget Impact J 6:5788–5803

    Google Scholar 

  36. Jha HC, Lu J, Saha A, Cai Q, Banerjee S, Prasad MAJ et al (2013) EBNA3C-mediated regulation of aurora kinase B contributes to Epstein–Barr virus-induced B-cell proliferation through modulation of the activities of the retinoblastoma protein and apoptotic caspases. J Virol 87:12121–12138

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang R, Strong MJ, Baddoo M, Lin Z, Wang Y-P, Flemington EK et al (2017) Interaction of Epstein–Barr virus genes with human gastric carcinoma transcriptome. Oncotarget Impact J 8:38399–38412

    Google Scholar 

  38. Fukayama M (2010) Epstein-Barr virus and gastric carcinoma. Pathol Int 60:337–350

    CAS  PubMed  Google Scholar 

  39. Kang BW, Baek DW, Kang H, Baek JH, Kim JG (2019) Novel therapeutic approaches for Epstein–Barr virus associated gastric cancer. Anticancer Res 39:4003–4010

    CAS  PubMed  Google Scholar 

  40. Bass AJ, Thorsson V, Shmulevich I, Reynolds SM, Miller M, Bernard B et al (2014) Comprehensive molecular characterization of gastric adenocarcinoma. Nature 513:202–209

    Google Scholar 

  41. Matsusaka K, Funata S, Fukayama M, Kaneda A (2014) DNA methylation in gastric cancer, related to Helicobacter pylori and Epstein–Barr virus. World J Gastroenterol 20:3916–3926

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Geddert H, Hausen AZ, Gabbert HE, Sarbia M (2010) EBV-infection in cardiac and non-cardiac gastric adenocarcinomas is associated with promoter methylation of p16, p14 and APC, but not hMLH1. Anal Cell Pathol 33:143–149

    CAS  Google Scholar 

  43. Naseem M, Barzi A, Brezden-Masley C, Puccini A, Berger MD, Tokunaga R et al (2018) Outlooks on Epstein–Barr virus associated gastric cancer. Cancer Treat Rev 66:15–22

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Miliotis CN, Slack FJ (2020) Multi-layered control of PD-L1 expression in Epstein–Barr virus-associated gastric cancer. J Cancer Meta Treat 6:13

    CAS  Google Scholar 

  45. Sonkar C, Verma T, Chatterji D, Jain AK, Jha HC (2020) Status of kinases in Epstein–Barr virus and Helicobacter pylori coinfection in gastric cancer cells. BMC Cancer 20:925

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Sivachandran N et al (2020) Epstein–Barr nuclear antigen 1 hijacks the host kinase CK2 to disrupt PML nuclear bodies. J Virol. https://doi.org/10.1128/JVI.01183-10

    Article  Google Scholar 

  47. Fukuda M, Longnecker R (2004) Latent membrane protein 2A inhibits transforming growth factor-β1-induced apoptosis through the phosphatidylinositol 3-Kinase/Akt pathway. J Virol 78:1697–1705

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Fukuda M, Longnecker R (2007) Epstein–Barr virus latent membrane protein 2A mediates transformation through constitutive activation of the Ras/PI3-K/Akt pathway. J Virol 81:9299–9306

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Hino R, Uozaki H, Inoue Y, Shintani Y, Ushiku T, Sakatani T et al (2008) Survival advantage of EBV-associated gastric carcinoma: survivin up-regulation by viral latent membrane protein 2A. Cancer Res 68:1427–1435

    CAS  PubMed  Google Scholar 

  50. Qi Y-F, Liu M, Zhang Y, Liu W, Xiao H, Luo B (2019) EBV down-regulates COX-2 expression via TRAF2 and ERK signal pathway in EBV-associated gastric cancer. Virus Res 272:197735

    CAS  PubMed  Google Scholar 

  51. Dávila-Collado R, Jarquín-Durán O, Dong LT, Espinoza JL (2020) Epstein-Barr virus and Helicobacter pylori co-infection in non-malignant gastroduodenal disorders. Pathogens 9:104

    PubMed Central  Google Scholar 

  52. Pandey S, Jha HC, Shukla SK, Shirley MK, Robertson ES (2018) Epigenetic regulation of tumor suppressors by Helicobacter pylori enhances EBV-induced proliferation of gastric epithelial cells. MBio 9:e00649

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Cárdenas-Mondragón MG, Carreón-Talavera R, Camorlinga-Ponce M, Gomez-Delgado A, Torres J, Fuentes-Pananá EM (2013) Epstein Barr virus and Helicobacter pylori co-infection are positively associated with severe gastritis in pediatric patients. PLoS ONE 8:e62850

    PubMed  PubMed Central  Google Scholar 

  54. Mohr CF, Kalmer M, Gross C, Mann MC, Sterz KR, Kieser A et al (2014) The tumor marker Fascin is induced by the Epstein–Barr virus-encoded oncoprotein LMP1 via NF-κB in lymphocytes and contributes to their invasive migration. Cell Commun Signal 12:46

    PubMed  PubMed Central  Google Scholar 

  55. Liu X, Cohen JI (2016) Epstein–Barr virus (EBV) tegument protein bgLF2 promotes EBV reactivation through activation of the p38 mitogen-activated protein kinase. J Virol 90:1129–1138

    CAS  PubMed  Google Scholar 

  56. Pena-Ponce MG, Jimenez MT, Hansen LM, Solnick JV, Miller LA (2017) The Helicobacter pylori type IV secretion system promotes IL-8 synthesis in a model of pediatric airway epithelium via p38 MAP kinase. PLoS ONE 12:e0183324

    Google Scholar 

  57. Byun E, Park B, Lim JW, Kim H (2016) Activation of NF-κB and AP-1 mediates hyperproliferation by inducing β-catenin and c-Myc in Helicobacter pylori-infected gastric epithelial cells. Yonsei Med J 57:647–651

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Saju P, Murata-Kamiya N, Hayashi T, Senda Y, Nagase L, Noda S et al (2016) Host SHP1 phosphatase antagonizes Helicobacter pylori CagA and can be downregulated by Epstein–Barr virus. Nat Microbiol 1:1–8

    Google Scholar 

  59. Sinclair J (2008) Human cytomegalovirus: latency and reactivation in the myeloid lineage. J Clin Virol 41:180–185

    CAS  PubMed  Google Scholar 

  60. Slobedman B, Cao JZ, Avdic S, Webster B, McAllery S, Cheung AK et al (2010) Human cytomegalovirus latent infection and associated viral gene expression. Fut Microbiol 5:883–900

    CAS  Google Scholar 

  61. Del Moral-Hernández O, Castañón-Sánchez CA, Reyes-Navarrete S, Martínez-Carrillo DN, Betancourt-Linares R, Jiménez-Wences H et al (2019) Multiple infections by EBV, HCMV and Helicobacter pylori are highly frequent in patients with chronic gastritis and gastric cancer from Southwest Mexico: an observational study. Medicine 98:e14124

    PubMed  PubMed Central  Google Scholar 

  62. Soroceanu L, Cobbs CS (2011) Is HCMV a tumor promoter? Virus Res 157:193–203

    CAS  PubMed  Google Scholar 

  63. Zhang L, Guo G, Xu J, Sun X, Chen W, Jin J et al (2017) Human cytomegalovirus detection in gastric cancer and its possible association with lymphatic metastasis. Diagn Microbiol Infect Dis 88:62–68

    CAS  PubMed  Google Scholar 

  64. Chan G, Nogalski MT, Yurochko AD (2009) Activation of EGFR on monocytes is required for human cytomegalovirus entry and mediates cellular motility. PNAS Natl Acad Sci 106:22369–22374

    CAS  Google Scholar 

  65. Wu Y, Prager A, Boos S, Resch M, Brizic I, Mach M et al (2017) Human cytomegalovirus glycoprotein complex gH/gL/gO uses PDGFR-α as a key for entry. PLoS Pathog 13:e1006281

    PubMed  PubMed Central  Google Scholar 

  66. Mohebbi A, Mamizadeh Z, Bagheri H, Sharifnezhad F, Tabarraei A, Yazdi M (2020) Prevalent latent human cytomegalovirus genotype b2 in biopsy samples of gastric cancer. Future Virol Future Med 15:71–78

    CAS  Google Scholar 

  67. Fattahi S, Kosari-Monfared M, Ghadami E, Golpour M, Khodadadi P, Ghasemiyan M et al (2018) Infection-associated epigenetic alterations in gastric cancer: new insight in cancer therapy. J Cell Physiol 233:9261–9270

    CAS  PubMed  Google Scholar 

  68. Kosari-Monfared M, Nikbakhsh N, Fattahi S, Ghadami E, Ranaei M, Taheri H et al (2019) CTNNBIP1 downregulation is associated with tumor grade and viral infections in gastric adenocarcinoma. J Cell Physiol 234:2895–2904

    CAS  PubMed  Google Scholar 

  69. Shi L, Fan B, Chen D, Guo C, Xiang H, Nie Y et al (2020) Human cytomegalovirus protein UL136 activates the IL-6, STAT3 signal through MiR-138 and MiR-34c in gastric cancer cells. Int J Clin Oncol. https://doi.org/10.1007/s10147-020-01749-z

    Article  PubMed  Google Scholar 

  70. Chen W, Lin K, Zhang L, Guo G, Sun X, Chen J et al (2015) The cytomegalovirus protein UL138 induces apoptosis of gastric cancer cells by binding to heat shock protein 70. Oncotarget Impact J 7:5630–5645

    Google Scholar 

  71. Meng L, Ding L, Yu Y, Li W (2020) JAK3 and TYK2 serve as prognostic biomarkers and are associated with immune infiltration in stomach adenocarcinoma. BioMed Res Int. https://doi.org/10.1155/2020/7973568

    Article  PubMed  PubMed Central  Google Scholar 

  72. Wöss K, Simonović N, Strobl B, Macho-Maschler S, Müller M (2019) TYK2: an upstream kinase of STATs in cancer. Cancers 11:1728

    PubMed Central  Google Scholar 

  73. Yap TA, Bjerke L, Clarke PA, Workman P (2015) Drugging PI3K in cancer: refining targets and therapeutic strategies. Curr Opin Pharmacol 23:98–107

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Lang SA, Gaumann A, Koehl GE, Seidel U, Bataille F, Klein D et al (2007) Mammalian target of rapamycin is activated in human gastric cancer and serves as a target for therapy in an experimental model. Int J Cancer 120:1803–1810

    CAS  PubMed  Google Scholar 

  75. Genentech, Inc (2020) A randomized, phase II, placebo-controlled study of Ipatasertib (GDC-0068), an inhibitor to Akt, in combination with fluoropyrimidine plus oxaliplatin in patients with locally advanced or metastatic gastric or gastroesophageal junction adenocarcinoma. clinicaltrials.gov. Report No.: NCT01896531. https://clinicaltrials.gov/ct2/show/NCT01896531

  76. Novartis Pharmaceuticals (2020) A phase IB, multicenter, open-label dose escalation study of the PI3K inhibitor BYL719 in combination with the HSP90 inhibitor AUY922 in patients with advanced or metastatic gastric cancer carrying a molecular alteration of PIK3CA or an amplification of HER2. clinicaltrials.gov. Report No.: NCT01613950. https://clinicaltrials.gov/ct2/show/NCT01613950

  77. Ang YLE, Yong WP, Tan P (2016) Translating gastric cancer genomics into targeted therapies. Crit Rev Oncol Hematol 100:141–146

    PubMed  Google Scholar 

  78. Amgen (2016) A Phase 1, first-in-human study evaluating the safety, tolerability, and pharmacokinetics of AMG 337 in adult subjects with advanced solid tumors. clinicaltrials.gov. Report No.: NCT01253707. https://clinicaltrials.gov/ct2/show/NCT01253707

  79. Amgen (2017) A multicenter, Phase 2, single arm, two cohort study evaluating the efficacy, safety, and pharmacokinetics of AMG337 in subjects with MET amplified gastric/gastroesophageal junction/esophageal adenocarcinoma or other MET amplified solid tumors. clinicaltrials.gov. Report No.: NCT02016534. https://clinicaltrials.gov/ct2/show/NCT02016534

  80. C-Met (2020) Inhibitor AMG 337, oxaliplatin, leucovorin calcium, and fluorouracil in treating patients with advanced stomach or esophageal cancer—full text view. ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT02344810

  81. Magnelli L, Schiavone N, Staderini F, Biagioni A, Papucci L (2020) MAP kinases pathways in gastric cancer. Int J Mol Sci 21:2893

    CAS  PubMed Central  Google Scholar 

  82. Cui Y, Yu S, Zhu M, Cheng X, Yu Y, Tang Z et al (2020) Identifying predictive factors of recurrence after radical resection in gastric cancer by RNA immune-oncology panel. J Cancer 11:638–647

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Pottier C, Fresnais M, Gilon M, Jérusalem G, Longuespée R, Sounni NE (2020) Tyrosine kinase inhibitors in cancer: breakthrough and challenges of targeted therapy. Cancers 12:731

    CAS  PubMed Central  Google Scholar 

  84. Fontana E, Smyth EC (2016) Novel targets in the treatment of advanced gastric cancer: a perspective review. Ther Adv Med Oncol 8:113–125

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Lin W, Kao H-W, Robinson D, Kung H-J, Wu C-W, Chen H-C (2000) Tyrosine kinases and gastric cancer. Oncogene 19:5680–5689

    CAS  PubMed  Google Scholar 

  86. Nelson EA, Walker SR, Kepich A, Gashin LB, Hideshima T, Ikeda H et al (2008) Nifuroxazide inhibits survival of multiple myeloma cells by directly inhibiting STAT3. Blood 112:5095–5102

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Sunakawa Y, Lenz H-J (2015) Molecular classification of gastric adenocarcinoma: translating new insights from the cancer genome atlas research network. Curr Treat Options in Oncol 16:17

    Google Scholar 

  88. Li S, Du H, Wang Z, Zhou L, Zhao X, Zeng Y (2010) Meta-analysis of the relationship between Epstein–Barr virus infection and clinicopathological features of patients with gastric carcinoma. Sci China Life Sci 53:524–530

    PubMed  Google Scholar 

  89. Gryko M, Pryczynicz A, Zareba K, Kędra B, Kemona A, Guzińska-Ustymowicz K (2014) The expression of Bcl-2 and BID in gastric cancer cells. J Immunol Res 2014:e953203

    Google Scholar 

  90. Hirata Y, Maeda S, Mitsuno Y, Akanuma M, Yamaji Y, Ogura K et al (2001) Helicobacter pylori activates the cyclin D1 gene through mitogen-activated protein kinase pathway in gastric cancer cells. Infect Immun 69:3965–3971

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Yau TO, Tang C-M, Yu J (2014) Epigenetic dysregulation in Epstein-Barr virus-associated gastric carcinoma: disease and treatments. World J Gastroenterol 20:6448–6456

    PubMed  PubMed Central  Google Scholar 

  92. Judd LM, Menheniott TR, Ling H, Jackson CB, Howlett M, Kalantzis A et al (2014) Inhibition of the JAK2/STAT3 pathway reduces gastric cancer growth in vitro and in vivo. PLoS ONE 9:e95993

    PubMed  PubMed Central  Google Scholar 

  93. Schönrich G, Raftery MJ (2019) The PD-1/PD-L1 axis and virus infections: a delicate balance. Front Cell Infect Microbiol 9:207

    PubMed  PubMed Central  Google Scholar 

  94. Wang X, Zhang Y, Jiang L, Zhou F, Zhai H, Zhang M et al (2016) Interpreting the distinct and shared genetic characteristics between Epstein-Barr virus associated and non-associated gastric carcinoma. Gene 576:798–806

    CAS  PubMed  Google Scholar 

  95. Altman AM, Mahmud J, Nikolovska-Coleska Z, Chan G (2019) HCMV modulation of cellular PI3K/AKT/mTOR signaling: new opportunities for therapeutic intervention? Antiviral Res 163:82–90

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Servetas SL, Bridge DR, Merrell DS (2016) Molecular mechanisms of gastric cancer initiation and progression by Helicobacter pylori. Curr Opin Infect Dis 29:304–310

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Zhao J, Liang Q, Cheung K-F, Kang W, Lung RWM, Tong JHM et al (2013) Genome-wide identification of Epstein-Barr virus-driven promoter methylation profiles of human genes in gastric cancer cells: EBV-driven methylation in gastric cancer. Cancer 119:304–312

    CAS  PubMed  Google Scholar 

  98. Baud J, Varon C, Chabas S, Chambonnier L, Darfeuille F, Staedel C (2013) Helicobacter pylori initiates a mesenchymal transition through ZEB1 in gastric epithelial cells. PLoS ONE 8:e60315

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Teo WH, Chen H-P, Huang JC, Chan Y-J (2017) Human cytomegalovirus infection enhances cell proliferation, migration and upregulation of EMT markers in colorectal cancer-derived stem cell-like cells. Int J Oncol 51:1415–1426

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Voigtlaender M, Schneider-Merck T, Trepel M (2018) Lapatinib. In: Martens UM (ed) Small molecules in oncology. Springer International Publishing, Cham, pp 19–44

    Google Scholar 

  101. Dennie TW, Fleming RA, Bowen CJ et al (2011) A phase I study of capecitabine, oxaliplatin, and lapatinib in metastatic or advanced solid tumors. Clin Colorectal Cancer 10:57–62

    CAS  PubMed  Google Scholar 

  102. Croxtall JD, McKeage K (2010) Trastuzumab: in HER2-positive metastatic gastric cancer. Drugs 70:2259–2267

    CAS  PubMed  Google Scholar 

  103. Katoh M (2016) FGFR inhibitors: effects on cancer cells, tumor microenvironment and whole-body homeostasis (Review). Int J Mol Med 38:3–15

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Xie L, Su X, Zhang L, Yin X, Tang L, Zhang X et al (2013) FGFR2 gene amplification in gastric cancer predicts sensitivity to the selective FGFR inhibitor AZD4547. Clin Cancer Res 19:2572–2583

    CAS  PubMed  Google Scholar 

  105. Deng N, Goh LK, Wang H, Das K, Tao J, Tan IB et al (2012) A comprehensive survey of genomic alterations in gastric cancer reveals systematic patterns of molecular exclusivity and co-occurrence among distinct therapeutic targets. Gut 61:673–684

    CAS  PubMed  Google Scholar 

  106. Peng R, Chen Y, Wei L et al (2020) Resistance to FGFR1-targeted therapy leads to autophagy via TAK1/AMPK activation in gastric cancer. Gastric Cancer 23:988–1002

    CAS  PubMed  Google Scholar 

  107. Navas T, Kinders RJ, Lawrence SM et al (2020) Clinical evolution of epithelial-mesenchymal transition in human carcinomas. Cancer Res 80:304–318

    CAS  PubMed  Google Scholar 

  108. Bhullar KS, Lagarón NO, McGowan EM, Parmar I, Jha A, Hubbard BP et al (2018) Kinase-targeted cancer therapies: progress, challenges and future directions. Mol Cancer BioMed Central 17:1–20

    Google Scholar 

  109. Vennepureddy A, Singh P, Rastogi R, Atallah J, Terjanian T (2017) Evolution of ramucirumab in the treatment of cancer: a review of literature. J Oncol Pharm Pract 23:525–539

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This project was supported by Council of Scientific and Industrial Research Grant no. 37(1693)/17/EMR-II and Department of Science and Technology as Ramanujan fellowship grant no. SB/S2/RJN-132/20/5. DST-EMR: EMR/2017/001637.We are thankful to the Council of Scientific and Industrial Research and DST-Inspire for fellowship to Charu Sonkar and Nidhi Varshney respectively. The funding organization has not played any role in the study design or preparation of the manuscript. We appreciate our lab colleagues for insightful discussions and advice. We gratefully acknowledge the Indian Institute of Technology Indore for providing facilities and support. We further gratefully acknowledge Dr. Fabiola Ribeiro of Department of Biochemistry and Immunology, UFMG, Brazil for her efforts in correcting the language of the manuscript.

Funding

This project was supported by Council of Scientific and Industrial Research Grant no. 37(1693)/17/EMR-II and Department of Science and Technology as Ramanujan fellowship grant no. SB/S2/RJN-132/20/5. DST-EMR: EMR/2017/001637. We are thankful to the Council of Scientific and Industrial Research and DST-Inspire for fellowship to Charu Sonkar and Nidhi Varshney respectively. The funding organization has not played any role in the study design or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors made substantial contributions to the conception or design of the work.

Corresponding author

Correspondence to Hem Chandra Jha.

Ethics declarations

Conflict of interest

Authors have no competing interest.

Ethics approval

Not applicable.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sonkar, C., Varshney, N., Koganti, S. et al. Kinases and therapeutics in pathogen mediated gastric cancer. Mol Biol Rep 49, 2519–2530 (2022). https://doi.org/10.1007/s11033-021-07063-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-07063-9

Keywords

Navigation