Skip to main content
Log in

Protoplast isolation and transcriptome analysis of developing xylem in Pinus massoniana (Pinaceae)

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

With active physiological and biochemical activities, tissue-specific protoplasts from cambial derivatives, could serve as a specific source for information on xylogenesis for softwood species resistant to stable genetic transformation and lacking available mutants.

Methods and results

In this study, protoplasts were isolated from developing xylem of the Chinese red pine, Pinus massoniana, by enzymolysis. High-quality RNAs were extracted from developing xylem and their protoplasts for constructing transcriptome libraries. Using Illumina HiSeq 2500 PE150 platform, a total of 362,328,426 clean paired-end reads (54.35G) were generated from multiple cDNA libraries and assembled into 146,422 unigenes. The transcriptome data were further analysed to identify 1567 differentially expressed genes (DEGs) between the isolated protoplasts and developing xylem of P. massoniana (Masson pine), 1126 DEGs were upregulated in protoplasts relative to developing xylem cells and 441 were downregulated. Most of the differentially expressed genes in biological process terms are related to plant response, which may be due to the response to cell wall removal. Further, the expression pattern of 71 unigenes involved in lignin biosynthesis was verified by RNA-seq.

Conclusions

This study is the first to report the transcriptome profiles of the developing xylem and its protoplasts of coniferous trees, which provide a new perspective and valuable resource for tracking transcriptional regulatory events in wood formation of Masson pine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The raw data has been submitted to SRA database with accession numbers SRR12596930 (PM_XP2), SRR12596931 (PM_XP1), SRR12596932 (PM_X2) and SRR12596933 (PM_X1).

References

  1. Chen H, Wang JP, Liu H, Li H, Lin Y-CJ, Shi R, Yang C, Gao J, Zhou C, Li Q et al (2019) Hierarchical transcription factor and chromatin binding network for wood formation in black cottonwood (Populus trichocarpa). Plant Cell 31(3):602–626. https://doi.org/10.1105/tpc.18.00620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Plomion C, Leprovost G, Stokes A (2001) Wood formation in trees. Plant Physiol 127(4):1513–1523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Moyle R, Schrader J, Stenberg A, Olsson O, Saxena S, Sandberg G, Bhalerao RP (2002) Environmental and auxin regulation of wood formation involves members of the Aux/IAA gene family in hybrid aspen. Plant J 31(6):675–685

    Article  CAS  PubMed  Google Scholar 

  4. Lin Y-C, Li W, Sun Y-H, Kumari S, Wei H, Li Q, Tunlaya-Anukit S, Sederoff RR, Chiang VL (2013) SND1 transcription factor-directed quantitative functional hierarchical genetic regulatory network in wood formation in Populus trichocarpa. Plant Cell 25(11):4324–4341. https://doi.org/10.1105/tpc.113.117697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Schuetz M, Smith R, Ellis B (2013) Xylem tissue specification, patterning, and differentiation mechanisms. J Exp Bot 64(1):11–31. https://doi.org/10.1093/jxb/ers287

    Article  CAS  PubMed  Google Scholar 

  6. Shu W, Zhou H, Jiang C, Zhao S, Wang L, Li Q, Yang Z, Groover A, Lu M-Z (2019) The auxin receptor TIR1 homolog (PagFBL 1) regulates adventitious rooting through interactions with Aux/IAA28 in Populus. Plant Biotechnol J 17(2):338–349. https://doi.org/10.1111/pbi.12980

    Article  CAS  PubMed  Google Scholar 

  7. Chaffey N, Cholewa E, Regan S, Sundberg B (2002) Secondary xylem development in Arabidopsis: a model for wood formation. Physiol Plant 114(4):594–600

    Article  CAS  PubMed  Google Scholar 

  8. Jansson S, Douglas CJ (2007) Populus: a model system for plant biology. Annu Rev Plant Biol 58:435–458

    Article  CAS  PubMed  Google Scholar 

  9. Wang JP, Matthews ML, Williams CM, Shi R, Yang C, Tunlaya-Anukit S, Chen H-C, Li Q, Liu J, Lin C-Y et al (2018) Improving wood properties for wood utilization through multi-omics integration in lignin biosynthesis. Nat Commun 9(1):1579. https://doi.org/10.1038/s41467-018-03863-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Eeckhaut T, Lakshmanan PS, Deryckere D, Van Bockstaele E, Van Huylenbroeck J (2013) Progress in plant protoplast research. Planta 238(6):991. https://doi.org/10.1007/s00425-013-1936-7

    Article  CAS  PubMed  Google Scholar 

  11. Lin Y-C, Li W, Chen H, Li Q, Sun Y-H, Shi R, Lin C-Y, Wang JP, Chen H-C, Chuang L et al (2014) A simple improved-throughput xylem protoplast system for studying wood formation. Nat Protoc 9(9):2194–2205. https://doi.org/10.1038/nprot.2014.147

    Article  CAS  PubMed  Google Scholar 

  12. Li W, Lin Y-C, Li Q, Shi R, Lin C-Y, Chen H, Chuang L, Qu G-Z, Sederoff RR, Chiang VL (2014) A robust chromatin immunoprecipitation protocol for studying transcription factor-DNA interactions and histone modifications in wood-forming tissue. Nat Protoc 9(9):2180–2193. https://doi.org/10.1038/nprot.2014.146

    Article  CAS  PubMed  Google Scholar 

  13. Pascual MB, Llebrés M-T, Craven-Bartle B, Cañas RA, Cánovas FM, Ávila C (2018) PpNAC1, a main regulator of phenylalanine biosynthesis and utilization in maritime pine. Plant Biotechnol J 16(5):1094–1104. https://doi.org/10.1111/pbi.12854

    Article  CAS  PubMed  Google Scholar 

  14. Neale DB, Wegrzyn JL, Stevens KA, Zimin AV, Puiu D, Crepeau MW, Cardeno C, Koriabine M, Holtz-Morris AE, Liechty JD et al (2014) Decoding the massive genome of loblolly pine using haploid DNA and novel assembly strategies. Genome Biol 15(3):R59. https://doi.org/10.1186/gb-2014-15-3-r59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nystedt B, Street NR, Wetterbom A, Zuccolo A, Lin Y-C, Scofield DG, Vezzi F, Delhomme N, Giacomello S, Alexeyenko A et al (2013) The Norway spruce genome sequence and conifer genome evolution. Nature 497(7451):579–584. https://doi.org/10.1038/nature12211

    Article  CAS  PubMed  Google Scholar 

  16. Ni Z, Bai T, Chen Y, Huang Y, Xu L-A (2019) Effects of parental genetic distance on offspring growth performance in Pinus massoniana: significance of parental-selection in a clonal seed orchard. Euphytica 215(12):195. https://doi.org/10.1007/s10681-019-2525-z

    Article  CAS  Google Scholar 

  17. Leinhos V, Savidge RA (1993) Isolation of protoplasts from developing xylem of Pinus banksiana and Pinus strobus. Can J For Res 23:343–348

    Article  Google Scholar 

  18. Tan B, Xu M, Chen Y, Huang M (2013) Transient expression for functional gene analysis using Populus protoplasts. Plant Cell Tissue Organ Cult (PCTOC) 114(1):11–18. https://doi.org/10.1007/s11240-013-0299-x

    Article  CAS  Google Scholar 

  19. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q et al (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29(7):644–652. https://doi.org/10.1038/nbt.1883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Buchfink B, Xie C, Huson DH (2015) Fast and sensitive protein alignment using DIAMOND. Nat Methods 12(1):59–60. https://doi.org/10.1038/nmeth.3176

    Article  CAS  PubMed  Google Scholar 

  21. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M (2007) KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res 35:W182–W185

    Article  PubMed  PubMed Central  Google Scholar 

  23. Potter SC, Luciani A, Eddy SR, Park Y, Lopez R, Finn RD (2018) HMMER web server: 2018 update. Nucleic Acids Res 46(W1):W200–W204. https://doi.org/10.1093/nar/gky448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Götz S, García-Gómez JM, Terol J, Williams TD, Nagaraj SH, Nueda MJ, Robles M, Talón M, Dopazo J, Conesa A (2008) High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res 36(10):3420–3435. https://doi.org/10.1093/nar/gkn176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform 12:323. https://doi.org/10.1186/1471-2105-12-323

    Article  CAS  Google Scholar 

  26. Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15(12):550

    Article  PubMed  PubMed Central  Google Scholar 

  27. Yu G, Wang L-G, Han Y, He Q-Y (2012) clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16(5):284–287. https://doi.org/10.1089/omi.2011.0118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Alexa A, Rahnenführer J, Lengauer T (2006) Improved scoring of functional groups from gene expression data by decorrelating GO graph structure. Bioinformatics 22(13):1600–1607

    Article  CAS  PubMed  Google Scholar 

  29. Mao X, Cai T, Olyarchuk JG, Wei L (2005) Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary. Bioinformatics 21(19):3787–3793

    Article  CAS  PubMed  Google Scholar 

  30. Chen H, Yang Z, Hu Y, Tan J, Jia J, Xu H, Chen X (2016) Reference genes selection for quantitative gene expression studies in Pinus massoniana L. Trees 30(3):685–696. https://doi.org/10.1007/s00468-015-1311-3

    Article  CAS  Google Scholar 

  31. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25(4):402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  32. Li H, Chen G, Pang H, Wang Q, Dai X (2021) Investigation into different wood formation mechanisms between angiosperm and gymnosperm tree species at the transcriptional and post-transcriptional level. Front Plant Sci 12:1273

    Google Scholar 

  33. Ko J-H, Beers EP, Han K-H (2006) Global comparative transcriptome analysis identifies gene network regulating secondary xylem development in Arabidopsis thaliana. Mol Genet Genomics 276(6):517–531. https://doi.org/10.1007/s00438-006-0157-1

    Article  CAS  PubMed  Google Scholar 

  34. Ni Z, Han X, Yang Z, Xu M, Feng Y, Chen Y, Xu L-A (2020) Integrative analysis of wood biomass and developing xylem transcriptome provide insights into mechanisms of lignin biosynthesis in wood formation of Pinus massoniana. Int J Biol Macromol 163:1926–1937. https://doi.org/10.1016/j.ijbiomac.2020.08.253

    Article  CAS  PubMed  Google Scholar 

  35. Shen T, Xu M, Qi H, Feng Y, Yang Z, Xu M (2021) Uncovering miRNA-mRNA regulatory modules in developing xylem of Pinus massoniana via small RNA and degradome sequencing. Int J Mol Sci 22(18):10154. https://doi.org/10.3390/ijms221810154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Alscher RG (1989) Biosynthesis and antioxidant function of glutathione in plants. Physiol Plant 77(3):457–464. https://doi.org/10.1111/j.1399-3054.1989.tb05667.x

    Article  CAS  Google Scholar 

  37. Edwards R, Dixon DP, Walbot V (2000) Plant glutathione S-transferases: enzymes with multiple functions in sickness and in health. Trends Plant Sci 5(5):193–198

    Article  CAS  PubMed  Google Scholar 

  38. Herbette S, Lenne C, Leblanc N, Julien J-L, Drevet JR, Roeckel-Drevet P (2002) Two GPX-like proteins from Lycopersicon esculentum and Helianthus annuus are antioxidant enzymes with phospholipid hydroperoxide glutathione peroxidase and thioredoxin peroxidase activities. Eur J Biochem 269(9):2414–2420

    Article  CAS  PubMed  Google Scholar 

  39. Castillo EM, De Lumen BO, Reyes PS, De Lumen HZ (1990) Raffinose synthase and galactinol synthase in developing seeds and leaves of legumes. J Agric Food Chem 38(2):351–355. https://doi.org/10.1021/jf00092a003

    Article  CAS  Google Scholar 

  40. Garg AK, Kim J-K, Owens TG, Ranwala AP, Choi YD, Kochian LV, Wu RJ (2002) Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc Natl Acad Sci USA 99(25):15898–15903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jouanneau JP, Lapous D, Guern J (1991) In plant protoplasts, the spontaneous expression of defense reactions and the responsiveness to exogenous elicitors are under auxin control. Plant Physiol 96(2):459–466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mäder M, Ungemach J, Schloß P (1980) The role of peroxidase isoenzyme groups of Nicotiana tabacum in hydrogen peroxide formation. Planta 147(5):467–470. https://doi.org/10.1007/BF00380189

    Article  PubMed  Google Scholar 

  43. Steponkus PL, Dowgert MF, Gordon-Kamm WJ (1983) Destabilization of the plasma membrane of isolated plant protoplasts during a freeze-thaw cycle: the influence of cold acclimation. Cryobiology 20(4):448–465

    Article  CAS  PubMed  Google Scholar 

  44. Coleman HD, Yan J, Mansfield SD (2009) Sucrose synthase affects carbon partitioning to increase cellulose production and altered cell wall ultrastructure. Proc Natl Acad Sci USA 106(31):13118–13123. https://doi.org/10.1073/pnas.0900188106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hématy K, Sado P-E, Van Tuinen A, Rochange S, Desnos T, Balzergue S, Pelletier S, Renou J-P, Höfte H (2007) A receptor-like kinase mediates the response of Arabidopsis cells to the inhibition of cellulose synthesis. Curr Biol 17(11):922–931

    Article  PubMed  Google Scholar 

  46. Roudier F, Fernandez AG, Fujita M, Himmelspach R, Borner GHH, Schindelman G, Song S, Baskin TI, Dupree P, Wasteneys GO et al (2005) COBRA, an Arabidopsis extracellular glycosyl-phosphatidyl inositol-anchored protein, specifically controls highly anisotropic expansion through its involvement in cellulose microfibril orientation. Plant Cell 17(6):1749–1763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ibar C, Orellana A (2007) The import of S-adenosylmethionine into the Golgi apparatus is required for the methylation of homogalacturonan. Plant Physiol 145(2):504–512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sénéchal F, Graff L, Surcouf O, Marcelo P, Rayon C, Bouton S, Mareck A, Mouille G, Stintzi A, Höfte H et al (2014) Arabidopsis PECTIN METHYLESTERASE17 is co-expressed with and processed by SBT3.5, a subtilisin-like serine protease. Ann Bot 114(6):1161–1175. https://doi.org/10.1093/aob/mcu035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mohnen D, Bar-Peled M, Somerville C (2008) Cell wall polysaccharide synthesis. Biomass Recalcitrance. https://doi.org/10.1002/9781444305418.ch5

    Article  Google Scholar 

  50. Liu H, Chen H, Ding G, Li K, Ren Q (2020) Identification of candidate genes conferring tolerance to aluminum stress in Pinus massoniana inoculated with ectomycorrhizal fungus. BMC Plant Biol 20(1):521. https://doi.org/10.1186/s12870-020-02719-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zubieta C, Kota P, Ferrer J-L, Dixon RA, Noel JP (2002) Structural basis for the modulation of lignin monomer methylation by caffeic acid/5-hydroxyferulic acid 3/5-O-methyltransferase. Plant Cell 14(6):1265–1277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ruegger M, Meyer K, Cusumano JC, Chapple C (1999) Regulation of ferulate-5-hydroxylase expression in Arabidopsis in the context of sinapate ester biosynthesis. Plant Physiol 119(1):101–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sibout R, Baucher M, Gatineau M, Van Doorsselaere J, Mila I, Pollet B, Maba B, Pilate G, Lapierre C, Boerjan W et al (2002) Expression of a poplar cDNA encoding a ferulate-5-hydroxylase/coniferaldehyde 5-hydroxylase increases S lignin deposition in Arabidopsis thaliana. Plant Physiol Biochem 40(12):1087–1096. https://doi.org/10.1016/S0981-9428(02)01474-2

    Article  CAS  Google Scholar 

  54. Guo D, Chen F, Inoue K, Blount JW, Dixon RA (2001) Downregulation of caffeic acid 3-O-methyltransferase and caffeoyl CoA 3-O-methyltransferase in transgenic alfalfa. Impacts on lignin structure and implications for the biosynthesis of G and S lignin. Plant Cell 13(1):73–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by Grants from the Open Research Fund of Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation (17-B-03-01), the Science and Technology Major Program of Guangxi (AA17204087-1) and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Contributions

MX participated in the conception and design of the experiments and reviewed a draft of the manuscript. TS and MXX participated in conducting the experiments and analyzing the data and drafted the manuscript. HQ participated in conducting the experiments and analyzing the data. FY and ZY participated in the conception and design of the experiments. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Meng Xu.

Ethics declarations

Conflict of interest

No potential conflicts of interest were disclosed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

11033_2021_6995_MOESM1_ESM.jpg

Supplementary file1 (JPG 44 kb). Supplementary Figure S1 Active protoplasts under light microscope of big (red) and small cell (green

11033_2021_6995_MOESM2_ESM.jpg

Supplementary file2 (JPG 36 kb). Supplementary Figure S2 Agilent 2100 Bioanalyzer analysis of total RNA extracted from developing xylem and its protoplasts of masson pine, PM1/2_X-developing xylem, PM1/2_XP- protoplasts isolated from developing xylem

11033_2021_6995_MOESM3_ESM.jpg

Supplementary file3 (JPG 303 kb). Supplementary Figure S3 Annotation information of assembled unigenes in masson pine. (A) Number and percentage of unigenes annotated to the seven databases. (B) A seven-way Venn diagram, which indicating 9,994 unigenes matched in seven different databases

11033_2021_6995_MOESM4_ESM.jpg

Supplementary file4 (JPG 738 kb). Supplementary Figure S4 Unigenes annotation of GO, KOG, and KEGG databases. (A) GO categories of all unigenes. (B) KOG function classification. (C) KEGG annotation of putative proteins. The y-axis indicates the name of the KEGG metabolic pathway. The x-axis indicates the percentage of the number of unigenes annotated to the pathway out of the total number of unigenes annotated

11033_2021_6995_MOESM5_ESM.jpg

Supplementary file5 (JPG 265 kb). Supplementary Figure S5 The FPKM of unigenes in PM_XP and PM_X. (A) The FPKM boxplots of all unigenes in PM_X and PM_XP. (B) The distribution of FPKM values of all unigenes in PM_X and PM_XP

Supplementary file6 (JPG 76 kb). Supplementary Figure S6 The PCA analysis results of PM_XP and PM_X

Supplementary file7 (JPG 1,382 kb). Supplementary Figure S7 GO enrichment analysis of DEGs

Supplementary file8 (JPG 200 kb). Supplementary Figure S8 GO enrichment of PM_X-specific unigenes

Supplementary file9 (JPG 192 kb). Supplementary Figure S9 KEGG enrichment of PM_X -specific unigenes

Supplementary file10 (XLSX 9 kb)

Supplementary file11 (XLSX 223 kb)

Supplementary file12 (XLSX 1197 kb)

Supplementary file13 (XLSX 12 kb)

Supplementary file14 (XLSX 10 kb)

Supplementary file15 (XLSX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, T., Xu, M., Qi, H. et al. Protoplast isolation and transcriptome analysis of developing xylem in Pinus massoniana (Pinaceae). Mol Biol Rep 49, 1857–1869 (2022). https://doi.org/10.1007/s11033-021-06995-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06995-6

Keywords

Navigation