Skip to main content

Advertisement

Log in

Current technological interventions and applications of CRISPR/Cas for crop improvement

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Efficient and innovative breeding strategies are immensely required to meet the global food demand, nutritional security and sustainable agriculture. Genome editing tools have emerged as an effective technology for site-directed genome modification causing the change in gene expression and protein function for the improvement of various important traits in particular the CRISPR/Cas (Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated protein). As the technology evolved with time, advances have been observed like prime editing, base editing, PAMless editing, Drosha based editing with multiple targets having the potential to fulfill the regulatory processes around the world. These recent interventions are highly proficient, cost-efficient, user-friendly, and holds promise for a major revolution in basic and applied plant biology research in the ever-evolving climatic conditions. In the review, we have discussed the most recent technologies and advances for CRISPR/Cas editing in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Mullis KB (2016) https://www.karymullis.com/

  2. Pavletich NP, Pabo CO (1991) Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 A. Science 252:809–817

    Article  CAS  PubMed  Google Scholar 

  3. Feng Z, Zhang B, Ding W, Liu X, Yang D-L, Wei P, Cao F, Zhu S, Zhang F, Mao Y (2013) Efficient genome editing in plants using a CRISPR/Cas system. Cell Res 23:1229–1232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Li J-F, Norville JE, Aach J, McCormack M, Zhang D, Bush J, Church GM, Sheen J (2013) Multiplex and homologous recombination–mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol 31:688–691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Nekrasov V, Staskawicz B, Weigel D, Jones JDG, Kamoun S (2013) Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat Biotechnol 31:691–693

    Article  CAS  PubMed  Google Scholar 

  6. Zhang F, Cong L, Lodato S, Kosuri S, Church GM, Arlotta P (2011) Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription. Nat Biotechnol 29:149–153

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Mussolino C, Cathomen T (2013) RNA guides genome engineering. Nat Biotechnol 31:208–209

    Article  CAS  PubMed  Google Scholar 

  8. Chen F, Pruett-Miller SM, Huang Y, Gjoka M, Duda K, Taunton J, Collingwood TN, Frodin M, Davis GD (2011) High-frequency genome editing using ssDNA oligonucleotides with zinc-finger nucleases. Nat Methods 8:753–755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang Y, Cheng X, Shan Q, Zhang Y, Liu J, Gao C, Qiu JL (2014) Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol 32:947–951. https://doi.org/10.1038/nbt.2969

    Article  CAS  PubMed  Google Scholar 

  10. Charpentier E, Doudna JA (2013) Rewriting a genome. Nature 495:50–51

    Article  CAS  PubMed  Google Scholar 

  11. Rong YS, Golic KG (2000) Gene targeting by homologous recombination in drosophila. Science 288:2013–2018

    Article  CAS  PubMed  Google Scholar 

  12. Vats S, Kumawat S, Kumar V, Patil GB, Joshi T, Sonah H, Sharma TR, Deshmukh R (2019) Genome editing in plants: exploration of technological advancements and challenges. Cells 8:1386

    Article  CAS  PubMed Central  Google Scholar 

  13. Matsoukas IG (2020) Prime editing: genome editing for rare genetic diseases without double-strand breaks or donor DNA. Front Genet 11:528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR (2016) Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533:420–424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Komor AC, Zhao KT, Packer MS, Gaudelli NM, Waterbury AL, Koblan LW, Kim YB, Badran AH, Liu DR (2017) Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C: G-to-T: a base editors with higher efficiency and product purity. Sci Adv 3:eaao4774

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Khan SH (2019) Genome-editing technologies: concept, pros, and cons of various genome-editing techniques and bioethical concerns for clinical application. Mol Ther Acids 16:326–334

    Article  CAS  Google Scholar 

  17. Koonin EV, Makarova KS, Zhang F (2017) Diversity, classification and evolution of CRISPR-Cas systems. Curr Opin Microbiol 37:67–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Claussin C, Chang M (2016) Multiple Rad52-mediated homology-directed repair mechanisms are required to prevent telomere attrition-induced senescence in Saccharomyces cerevisiae. PLoS Genet 12:e1006176

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Komiyama M (2014) Chemical modifications of artificial restriction DNA cutter (ARCUT) to promote its in vivo and in vitro applications. Artif DNA PNA XNA 5:e1112457

    Article  PubMed  Google Scholar 

  20. Yoon Y, Wang D, Tai PWL, Riley J, Gao G, Rivera-Pérez JA (2018) Streamlined ex vivo and in vivo genome editing in mouse embryos using recombinant adeno-associated viruses. Nat Commun 9:1–12

    Article  CAS  Google Scholar 

  21. McMurrough TA, Brown CM, Zhang K, Hausner G, Junop MS, Gloor GB, Edgell DR (2018) Active site residue identity regulates cleavage preference of LAGLIDADG homing endonucleases. Nucleic Acids Res. 46:11990–12007

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Fischer SEJ (2015) RNA interference and MicroRNA‐mediated silencing. Curr Protoc Mol Biol 112:26.1.1-26.1.5

  23. Paul S, Caruthers MH (2016) Synthesis of phosphorodiamidate morpholino oligonucleotides and their chimeras using phosphoramidite chemistry. J Am Chem Soc 138:15663–15672

    Article  CAS  PubMed  Google Scholar 

  24. Gasiunas G, Barrangou R, Horvath P, Siksnys V (2012) Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci 109:E2579–E2586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F (2013) Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8:2281–2308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P, Volz SE, Joung J, Van Der Oost J, Regev A (2015) Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163:759–771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gao L, Cox DBT, Yan WX, Manteiga JC, Schneider MW, Yamano T, Nishimasu H, Nureki O, Crosetto N, Zhang F (2017) Engineered Cpf1 variants with altered PAM specificities. Nat Biotechnol 35:789–792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhong Z, Zhang Y, You Q, Tang X, Ren Q, Liu S, Yang L, Wang Y, Liu X, Liu B (2018) Plant genome editing using FnCpf1 and LbCpf1 nucleases at redefined and altered PAM sites. Mol Plant 11:999–1002

    Article  CAS  PubMed  Google Scholar 

  30. Begemann MB, Gray BN, January E, Singer A, Kesler DC, He Y, Liu H, Guo H, Jordan A, Brutnell TP (2017) Characterization and validation of a novel group of type V, class 2 nucleases for in vivo genome editing. bioRxiv. https://doi.org/10.1101/192799192799

    Article  Google Scholar 

  31. Cox DBT, Gootenberg JS, Abudayyeh OO, Franklin B, Kellner MJ, Joung J, Zhang F (2017) RNA editing with CRISPR-Cas13. Science 358:1019–1027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ferreira R, Skrekas C, Nielsen J, David F (2018) Multiplexed CRISPR/Cas9 genome editing and gene regulation using Csy4 in Saccharomyces cerevisiae. ACS Synth Biol 7:10–15

    Article  CAS  PubMed  Google Scholar 

  33. Salsman J, Dellaire G (2017) Precision genome editing in the CRISPR era. Biochem Cell Biol 95:187–201

    Article  CAS  PubMed  Google Scholar 

  34. Chen K, Wang Y, Zhang R, Zhang H, Gao C (2019) CRISPR/Cas genome editing and precision plant breeding in agriculture. Annu Rev Plant Biol 70:667–697. https://doi.org/10.1146/annurev-arplant-050718-100049

    Article  CAS  PubMed  Google Scholar 

  35. Li Z, Zhang D, Xiong X, Yan B, Xie W, Sheen J, Li J-F (2017) A potent Cas9-derived gene activator for plant and mammalian cells. Nat Plants 3:930–936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tang X, Lowder LG, Zhang T, Malzahn AA, Zheng X, Voytas DF, Zhong Z, Chen Y, Ren Q, Li Q (2017) A CRISPR–Cpf1 system for efficient genome editing and transcriptional repression in plants. Nat Plants 3:1–5

    Google Scholar 

  37. Lowder LG, Zhang D, Baltes NJ, Paul JW, Tang X, Zheng X, Voytas DF, Hsieh T-F, Zhang Y, Qi Y (2015) A CRISPR/Cas9 toolbox for multiplexed plant genome editing and transcriptional regulation. Plant Physiol 169:971–985

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Rees HA, Liu DR (2018) Base editing: precision chemistry on the genome and transcriptome of living cells. Nat Rev Genet 19:770–788. https://doi.org/10.1038/s41576-018-0059-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gaudelli NM, Komor AC, Rees HA, Packer MS, Badran AH, Bryson DI, Liu DR (2017) Programmable base editing of A• T to G• C in genomic DNA without DNA cleavage. Nature. 551:464–471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jin S, Zong Y, Gao Q, Zhu Z, Wang Y, Qin P, Liang C, Wang D, Qiu J-L, Zhang F (2019) Cytosine, but not adenine, base editors induce genome-wide off-target mutations in rice. Science 364:292–295

    Article  CAS  PubMed  Google Scholar 

  41. Grünewald J, Zhou R, Iyer S, Lareau CA, Garcia SP, Aryee MJ, Joung JK (2019) CRISPR adenine and cytosine base editors with reduced RNA off-target activities. bioRxiv 631721

  42. Xie K, Minkenberg B, Yang Y (2015) Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system. Proc Natl Acad Sci 112:3570–3575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Xie C, Chen Y-L, Wang D-F, Wang Y-L, Zhang T-P, Li H, Liang F, Zhao Y, Zhang G-Y (2017) SgRNA expression of CRIPSR-Cas9 system based on MiRNA polycistrons as a versatile tool to manipulate multiple and tissue-specific genome editing. Sci Rep 7:1–12

    CAS  Google Scholar 

  44. Rodríguez-Leal D, Lemmon ZH, Man J, Bartlett ME, Lippman ZB (2017) Engineering quantitative trait variation for crop improvement by genome editing. Cell 171:470–480

    Article  PubMed  CAS  Google Scholar 

  45. Law JA, Jacobsen SE (2010) Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet 11:204–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kleinstiver BP, Prew MS, Tsai SQ, Topkar VV, Nguyen NT, Zheng Z, Gonzales APW, Li Z, Peterson RT, Yeh J-RJ (2015) Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature 523:481–485

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Kleinstiver BP, Pattanayak V, Prew MS, Tsai SQ, Nguyen NT, Zheng Z, Joung JK (2016) High-fidelity CRISPR–Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529:490–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Nishimasu H, Shi X, Ishiguro S, Gao L, Hirano S, Okazaki S, Noda T, Abudayyeh OO, Gootenberg JS, Mori H (2018) Engineered CRISPR-Cas9 nuclease with expanded targeting space. Science 361:1259–1262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hu JH, Miller SM, Geurts MH, Tang W, Chen L, Sun N, Zeina CM, Gao X, Rees HA, Lin Z (2018) Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature. 556:57–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Walton RT, Christie KA, Whittaker MN, Kleinstiver BP (2020) Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants. Science 368:290–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kleinstiver BP, Prew MS, Tsai SQ, Nguyen NT, Topkar VV, Zheng Z, Joung JK (2015) Broadening the targeting range of Staphylococcus aureus CRISPR-Cas9 by modifying PAM recognition. Nat Biotechnol 33:1293–1298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Anzalone AV, Randolph PB, Davis JR, Sousa AA, Koblan LW, Levy JM, Chen PJ, Wilson C, Newby GA, Raguram A, Liu DR (2019) Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576:149–157. https://doi.org/10.1038/s41586-019-1711-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lin Q, Zong Y, Xue C, Wang S, Jin S, Zhu Z, Wang Y, Anzalone AV, Raguram A, Doman JL (2020) Prime genome editing in rice and wheat. Nat Biotechnol 38:582–585

    Article  CAS  PubMed  Google Scholar 

  54. Butt H, Rao GS, Sedeek K, Aman R, Kamel R, Mahfouz M (2020) Engineering herbicide resistance via prime editing in rice. Plant Biotechnol J 18:2370–2372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Clarke R, Terry AR, Pennington H, Hasty C, MacDougall MS, Regan M, Merrill BJ (2021) Sequential activation of guide RNAs to enable successive CRISPR-Cas9 activities. Mol Cell 81:226–238

    Article  CAS  PubMed  Google Scholar 

  56. Clough SJ, Bent AF (1998) Floral dip: a simplified method for agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  57. Jiang W, Zhou H, Bi H, Fromm M, Yang B, Weeks DP (2013) Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res. 41:e188–e188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Xing H-L, Dong L, Wang Z-P, Zhang H-Y, Han C-Y, Liu B, Wang X-C, Chen Q-J (2014) A CRISPR/Cas9 toolkit for multiplex genome editing in plants. BMC Plant Biol 14:1–12

    Article  CAS  Google Scholar 

  59. Jia H, Wang N (2014) Targeted genome editing of sweet orange using Cas9/sgRNA. PLoS One 9:e93806

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Zhou X, Jacobs TB, Xue L, Harding SA, Tsai C (2015) Exploiting SNP s for biallelic CRISPR mutations in the outcrossing woody perennial Populus reveals 4-coumarate: CoA ligase specificity and redundancy. New Phytol 208:298–301

    Article  CAS  PubMed  Google Scholar 

  61. Svitashev S, Young JK, Schwartz C, Gao H, Falco SC, Cigan AM (2015) Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 and guide RNA. Plant Physiol 169:931–945. https://doi.org/10.1104/pp.15.00793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Andersson M, Turesson H, Olsson N, Fält A, Ohlsson P, Gonzalez MN, Samuelsson M, Hofvander P (2018) Genome editing in potato via CRISPR-Cas9 ribonucleoprotein delivery. Physiol Plant 164:378–384

    Article  CAS  PubMed  Google Scholar 

  63. Murovec J, Guček K, Bohanec B, Avbelj M, Jerala R (2018) DNA-free genome editing of Brassica oleracea and B. rapa protoplasts using CRISPR-Cas9 ribonucleoprotein complexes. Front Plant Sci 9:1594

    Article  PubMed  PubMed Central  Google Scholar 

  64. Sun Y, Zhang X, Wu C, He Y, Ma Y, Hou H, Guo X, Du W, Zhao Y, Xia L (2016) Engineering herbicide-resistant rice plants through CRISPR/Cas9-mediated homologous recombination of acetolactate synthase. Mol Plant 9:628–631

    Article  CAS  PubMed  Google Scholar 

  65. Zhang Y, Liang Z, Zong Y, Wang Y, Liu J, Chen K, Qiu J-L, Gao C (2016) Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA. Nat Commun 7:1–8

    Google Scholar 

  66. Li Z, Bin Liu Z, Xing A, Moon BP, Koellhoffer JP, Huang L, Ward RT, Clifton E, Falco SC, Cigan AM (2015) Cas9-guide RNA directed genome editing in soybean. Plant Physiol 169:960–970. https://doi.org/10.1104/pp.15.00783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Woo JW, Kim J, Il Kwon S, Corvalán C, Cho SW, Kim H, Kim S-G, Kim S-T, Choe S, Kim J-S (2015) DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nat Biotechnol 33:1162–1164

    Article  CAS  PubMed  Google Scholar 

  68. Lowder L, Malzahn A, Qi Y (2016) Rapid evolution of manifold CRISPR systems for plant genome editing. Front Plant Sci 7:1683

    Article  PubMed  PubMed Central  Google Scholar 

  69. Waltz E (2016) Gene-edited CRISPR mushroom escapes US regulation. Nature 532:293. https://doi.org/10.1038/nature.2016.19754

    Article  CAS  PubMed  Google Scholar 

  70. Tang X, Zheng X, Qi Y, Zhang D, Cheng Y, Tang A, Voytas DF, Zhang Y (2016) A single transcript CRISPR-Cas9 system for efficient genome editing in plants. Mol Plant 9:1088–1091

    Article  CAS  PubMed  Google Scholar 

  71. Shan Q, Wang Y, Li J, Zhang Y, Chen K, Liang Z, Zhang K, Liu J, Xi JJ, Qiu J-L (2013) Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol 31:686–688

    Article  CAS  PubMed  Google Scholar 

  72. Kim H, Kim S-T, Ryu J, Kang B-C, Kim J-S, Kim S-G (2017) CRISPR/Cpf1-mediated DNA-free plant genome editing. Nat Commun 8:1–7

    CAS  Google Scholar 

  73. Xie S, Shen B, Zhang C, Huang X, Zhang Y (2014) sgRNAcas9: a software package for designing CRISPR sgRNA and evaluating potential off-target cleavage sites. PLoS One 9:e100448

    Article  PubMed  PubMed Central  Google Scholar 

  74. Liu H, Ding Y, Zhou Y, Jin W, Xie K, Chen LL (2017) CRISPR-P 2.0: an improved CRISPR-Cas9 tool for genome editing in plants. Mol Plant 10:530–532. https://doi.org/10.1016/j.molp.2017.01.003

    Article  CAS  PubMed  Google Scholar 

  75. Kumar V, Jain M (2015) The CRISPR–Cas system for plant genome editing: advances and opportunities. J Exp Bot 66:47–57

    Article  CAS  PubMed  Google Scholar 

  76. Guo J, Li K, Jin L, Xu R, Miao K, Yang F, Qi C, Zhang L, Botella JR, Wang R (2018) A simple and cost-effective method for screening of CRISPR/Cas9-induced homozygous/biallelic mutants. Plant Methods 14:1–10

    Article  CAS  Google Scholar 

  77. Bhattacharya D, Van Meir EG (2019) A simple genotyping method to detect small CRISPR-Cas9 induced indels by agarose gel electrophoresis. Sci Rep 9:1–7

    Article  CAS  Google Scholar 

  78. Adrian J, Chang J, Ballenger CE, Bargmann BOR, Alassimone J, Davies KA, Lau OS, Matos JL, Hachez C, Lanctot A (2015) Transcriptome dynamics of the stomatal lineage: birth, amplification, and termination of a self-renewing population. Dev Cell 33:107–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Efroni I, Ip P-L, Nawy T, Mello A, Birnbaum KD (2015) Quantification of cell identity from single-cell gene expression profiles. Genome Biol 16:1–12

    Article  CAS  Google Scholar 

  80. Mohamed S, Cordones MN, Meunier AC, Vernet A, Perin C, Guiderdoni E, Sentenac H, Véry A-A (2017) Production of low-Cs+ rice plants by inactivation of the K+ transporter OsHAK1 with the CRISPR-Cas9 system. Colloque Inter-LabEx CRISPR-Cas9, in: Colloq. Inter-LabEx Cris. np

  81. Mao X, Zheng Y, Xiao K, Wei Y, Zhu Y, Cai Q, Chen L, Xie H, Zhang J (2018) OsPRX2 contributes to stomatal closure and improves potassium deficiency tolerance in rice. Biochem Biophys Res Commun 495:461–467. https://doi.org/10.1016/j.bbrc.2017.11.045

    Article  CAS  PubMed  Google Scholar 

  82. Macovei A, Sevilla NR, Cantos C, Jonson GB, Slamet-Loedin I, Čermák T, Voytas DF, Choi IR, Chadha-Mohanty P (2018) Novel alleles of rice eIF4G generated by CRISPR/Cas9-targeted mutagenesis confer resistance to Rice tungro spherical virus. Plant Biotechnol J 16:1918–1927. https://doi.org/10.1111/pbi.12927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Lu H, Luo T, Fu H, Wang L, Tan Y, Huang J, Wang Q, Ye G, Gatehouse AMR, Lou Y (2018) Resistance of rice to insect pests mediated by suppression of serotonin biosynthesis. Nat Plants 4:338–344

    Article  CAS  PubMed  Google Scholar 

  84. Dong OX, Yu S, Jain R, Zhang N, Duong PQ, Butler C, Li Y, Lipzen A, Martin JA, Barry KW (2020) Marker-free carotenoid-enriched rice generated through targeted gene insertion using CRISPR-Cas9. Nat Commun 11:1–10

    Article  CAS  Google Scholar 

  85. Xu Y, Lin Q, Li X, Wang F, Chen Z, Wang J, Li W, Fan F, Tao Y, Jiang Y (2021) Fine-tuning the amylose content of rice by precise base editing of the Wx gene. Plant Biotechnol J 19:11

    Article  CAS  PubMed  Google Scholar 

  86. Huang L, Li Q, Zhang C, Chu R, Gu Z, Tan H, Zhao D, Fan X, Liu Q (2020) Creating novel Wx alleles with fine-tuned amylose levels and improved grain quality in rice by promoter editing using CRISPR/Cas9 system. Plant Biotechnol J 18:2164–2166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Zeng D, Liu T, Ma X, Wang B, Zheng Z, Zhang Y, Xie X, Yang B, Zhao Z, Zhu Q, Liu YG (2020) Quantitative regulation of Waxy expression by CRISPR/Cas9-based promoter and 5’UTR-intron editing improves grain quality in rice. Plant Biotechnol J 18:2385–2387. https://doi.org/10.1111/pbi.13427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Santosh Kumar VV, Verma RK, Yadav SK, Yadav P, Watts A, Rao MV, Chinnusamy V (2020) CRISPR-Cas9 mediated genome editing of drought and salt tolerance (OsDST) gene in indica mega rice cultivar MTU1010. Physiol Mol Biol Plants 26:1099–1110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Usman B, Nawaz G, Zhao N, Liu Y, Li R (2020) Generation of high yielding and fragrant rice (Oryza sativa L) Lines by CRISPR/Cas9 targeted mutagenesis of three homoeologs of cytochrome P450 gene family and OsBADH2 and transcriptome and proteome profiling of revealed changes triggered by mutations. Plants 9:788

    Article  CAS  PubMed Central  Google Scholar 

  90. He LI, Xiufeng LI, Yang XU, Hualong LIU, Mingliang HE, Xiaojie T, Zhenyu W, Xiuju WU, Qingyun BU, Jie Y (2020) High-efficiency reduction of rice amylose content via CRISPR/Cas9-mediated base editing. 水稻科学 20: 445–448

  91. Li F, Komatsu A, Ohtake M, Eun H, Shimizu A, Kato H (2020) Direct identification of a mutation in OsSh1 causing non-shattering in a rice (Oryza sativa L.) mutant cultivar using whole-genome resequencing. Sci Rep 10:1–13

    CAS  Google Scholar 

  92. Huang S, Xin S, Xie G, Han J, Liu Z, Wang B, Zhang S, Wu Q, Cheng X (2020) Mutagenesis reveals that the rice OsMPT3 gene is an important osmotic regulatory factor. Crop J 8:465–479

    Article  Google Scholar 

  93. Nguyen TH, Mai HTT, Moukouanga D, Lebrun M, Bellafiore S, Champion A (2020) CRISPR/Cas9-mediated gene editing of the jasmonate biosynthesis OsAOC gene in rice, in: Jasmonate Plant Biol, Springer, pp 199–209

  94. Mubarok H, Basunanda P, Santoso TJ (2019) Tolerance of T2 generation ‘Kitaake’Rice (Oryza sativa L.) CRISPR/Cas9-OsGA20ox-2 mutant strains to drought condition, Ilmu Pertan. Agric Sci 4:123–130

    Google Scholar 

  95. Zhang Y, Wang X, Luo Y, Zhang L, Yao Y, Han L, Chen Z, Wang L, Li Y (2020) OsABA8ox2, an ABA catabolic gene, suppresses root elongation of rice seedlings and contributes to drought response. Crop J. 8:480–491. https://doi.org/10.1016/j.cj.2019.08.006

    Article  Google Scholar 

  96. Wang B, Zhong Z, Wang X, Han X, Yu D, Wang C, Song W, Zheng X, Chen C, Zhang Y (2020) Knockout of the OsNAC006 transcription factor causes drought and heat sensitivity in rice. Int J Mol Sci 21:13–16. https://doi.org/10.3390/ijms21072288

    Article  CAS  Google Scholar 

  97. Alfatih A, Wu J, Jan SU, Zhang Z, Xia J, Xiang C (2020) Loss of rice PARAQUAT TOLERANCE 3 confers enhanced resistance to abiotic stresses and increases grain yield in field. Plant Cell Environ 43:2743–2754

    Article  CAS  PubMed  Google Scholar 

  98. Zhang J, Fan X, Hu Y, Zhou X, He Q, Liang L, Xing Y (2020) Global analysis of CCT family knockout mutants identifies four genes involved in regulating heading date in rice. J Integr Plant Biol

  99. Cui X (2017), Targeted gene editing using CRISPR/Cas9 in a wheat protoplast system, Université d’Ottawa/University of Ottawa

  100. Sánchez-León S, Gil-Humanes J, Ozuna CV, Giménez MJ, Sousa C, Voytas DF, Barro F (2018) Low-gluten, nontransgenic wheat engineered with CRISPR/Cas9. Plant Biotechnol J 16:902–910

    Article  PubMed  CAS  Google Scholar 

  101. Zhang R, Liu J, Chai Z, Chen S, Bai Y, Zong Y, Chen K, Li J, Jiang L, Gao C (2019) Generation of herbicide tolerance traits and a new selectable marker in wheat using base editing. Nat Plants 5:480–485

    Article  CAS  PubMed  Google Scholar 

  102. Camerlengo F, Frittelli A, Sparks C, Doherty A, Martignago D, Larré C, Lupi R, Sestili F, Masci S (2020) CRISPR-Cas9 multiplex editing of the α-amylase/trypsin inhibitor genes to reduce allergen proteins in durum wheat. Front Sustain Food Syst 4:104

    Article  Google Scholar 

  103. Shi J, Gao H, Wang H, Lafitte HR, Archibald RL, Yang M, Hakimi SM, Mo H, Habben JE (2017) ARGOS 8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions. Plant Biotechnol J 15:207–216

    Article  CAS  PubMed  Google Scholar 

  104. Qi X, Wu H, Jiang H, Zhu J, Huang C, Zhang X, Liu C, Cheng B (2020) Conversion of a normal maize hybrid into a waxy version using in vivo CRISPR/Cas9 targeted mutation activity. Crop J 8:440–448. https://doi.org/10.1016/j.cj.2020.01.006

    Article  Google Scholar 

  105. Gao H, Gadlage MJ, Lafitte HR, Lenderts B, Yang M, Schroder M, Farrell J, Snopek K, Peterson D, Feigenbutz L (2020) Superior field performance of waxy corn engineered using CRISPR–Cas9. Nat Biotechnol 38:579–581

    Article  CAS  PubMed  Google Scholar 

  106. Zhong Y, Blennow A, Kofoed-Enevoldsen O, Jiang D, Hebelstrup KH (2019) Protein targeting to starch 1 is essential for starchy endosperm development in barley. J Exp Bot 70:485–496

    Article  CAS  PubMed  Google Scholar 

  107. Kis A, Hamar É, Tholt G, Bán R, Havelda Z (2019) Creating highly efficient resistance against wheat dwarf virus in barley by employing CRISPR/Cas9 system. Plant Biotechnol J 17:1004

    Article  PubMed  PubMed Central  Google Scholar 

  108. Yang Q, Zhong X, Li Q, Lan J, Tang H, Qi P, Ma J, Wang J, Chen G, Pu Z (2020) Mutation of the D-hordein gene by RNA-guided Cas9 targeted editing reducing the grain size and changing grain compositions in barley. Food Chem 311:125892

    Article  CAS  PubMed  Google Scholar 

  109. Li A, Jia S, Yobi A, Ge Z, Sato SJ, Zhang C, Angelovici R, Clemente TE, Holding DR (2018) Editing of an alpha-kafirin gene family increases, digestibility and protein quality in sorghum. Plant Physiol 177:1425–1438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Do PT, Nguyen CX, Bui HT, Tran LTN, Stacey G, Gillman JD, Zhang ZJ, Stacey MG (2019) Demonstration of highly efficient dual gRNA CRISPR/Cas9 editing of the homeologous GmFAD2–1A and GmFAD2–1B genes to yield a high oleic, low linoleic and α-linolenic acid phenotype in soybean. BMC Plant Biol 19:1–14

    Article  CAS  Google Scholar 

  111. Wang J, Kuang H, Zhang Z, Yang Y, Yan L (2019) ScienceDirect Generation of seed lipoxygenase-free soybean using CRISPR-Cas9. Crop J 8:432–439. https://doi.org/10.1016/j.cj.2019.08.008

    Article  Google Scholar 

  112. Zhang K, Nie L, Cheng Q, Yin Y, Chen K, Qi F, Zou D, Liu H, Zhao W, Wang B (2019) Effective editing for lysophosphatidic acid acyltransferase 2/5 in allotetraploid rapeseed (Brassica napus L.) using CRISPR-Cas9 system. Biotechnol Biofuels 12:1–18

    Article  Google Scholar 

  113. Zhai Y, Yu K, Cai S, Hu L, Amoo O, Xu L, Yang Y, Ma B, Jiao Y, Zhang C (2020) Targeted mutagenesis of BnTT8 homologs controls yellow seed coat development for effective oil production in Brassica napus L. Plant Biotechnol J 18:1153–1168

    Article  CAS  PubMed  Google Scholar 

  114. Karunarathna NL, Wang H, Harloff H, Jiang L, Jung C (2020) Elevating seed oil content in a polyploid crop by induced mutations in seed fatty acid reducer genes. Plant Biotechnol J 18:2251–2266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Sashidhar N, Harloff HJ, Potgieter L, Jung C (2020) Gene editing of three BnITPK genes in tetraploid oilseed rape leads to significant reduction of phytic acid in seeds. Plant Biotechnol J 18:2241–2250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Zheng M, Zhang L, Tang M, Liu J, Liu H, Yang H, Fan S, Terzaghi W, Wang H, Hua W (2020) Knockout of two Bna MAX 1 homologs by CRISPR/Cas9-targeted mutagenesis improves plant architecture and increases yield in rapeseed (Brassica napus L.). Plant Biotechnol J 18:644–654

    Article  CAS  PubMed  Google Scholar 

  117. Wang L, Chen L, Li R, Zhao R, Yang M, Sheng J, Shen L (2017) Reduced drought tolerance by CRISPR/Cas9- mediated SlMAPK3 mutagenesis in tomato plants. https://doi.org/10.1021/acs.jafc.7b02745

  118. Li R, Fu D, Zhu B, Luo Y, Zhu H (2018) CRISPR/Cas9-mediated mutagenesis of lncRNA1459 alters tomato fruit ripening. Plant J 94:513–524

    Article  CAS  PubMed  Google Scholar 

  119. Li X, Wang Y, Chen S, Tian H, Fu D, Zhu B, Luo Y, Zhu H (2018) Lycopene is enriched in tomato fruit by CRISPR/Cas9-mediated multiplex genome editing. Front Plant Sci 9:559

    Article  PubMed  PubMed Central  Google Scholar 

  120. Li R, Li R, Li X, Fu D, Zhu B, Tian H, Luo Y, Zhu H (2018) Multiplexed CRISPR/Cas9-mediated metabolic engineering of γ-aminobutyric acid levels in Solanum lycopersicum. Plant Biotechnol J 16:415–427

    Article  CAS  PubMed  Google Scholar 

  121. Tashkandi M, Ali Z, Aljedaani F, Shami A, Mahfouz MM (2018) Engineering resistance against tomato yellow leaf curl virus via the CRISPR/Cas9 system in tomato. Plant Signal Behav 13:e1525996

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Li T, Yang X, Yu Y, Si X, Zhai X, Zhang H, Dong W, Gao C, Xu C (2018) Domestication of wild tomato is accelerated by genome editing. Nat Biotechnol 36:1160–1163

    Article  CAS  Google Scholar 

  123. Zsögön A, Čermák T, Naves ER, Notini MM, Edel KH, Weinl S, Freschi L, Voytas DF, Kudla J, Peres LEP (2018) De novo domestication of wild tomato using genome editing. Nat Biotechnol 36:1211–1216

    Article  CAS  Google Scholar 

  124. Yu W, Wang L, Zhao R, Sheng J, Zhang S, Li R, Shen L (2019) Knockout of SlMAPK3 enhances tolerance to heat stress involving ROS homeostasis in tomato plants. BMC Plant Biol 19:1–13

    Article  Google Scholar 

  125. Hara CA, Ueta R, Hashimoto R, Osakabe Y, Osakabe K (2020), Efficient generation of null-segregant parthenocarpic tomato by CRISPR/Cas9 editing

  126. Bouzroud S, Gasparini K, Hu G, Barbosa MAM, Rosa BL, Fahr M, Bendaou N, Bouzayen M, Zsögön A, Smouni A (2020) Down regulation and loss of auxin response factor 4 function using CRISPR/Cas9 alters plant growth, stomatal function and improves tomato tolerance to salinity and osmotic stress. Genes 11:272

    Article  CAS  PubMed Central  Google Scholar 

  127. Hunziker J, Nishida K, Kondo A, Kishimoto S, Ariizumi T, Ezura H (2020) Multiple gene substitution by Target-AID base-editing technology in tomato. Sci Rep 10:1–12

    Article  CAS  Google Scholar 

  128. Liu L, Zhang J, Xu J, Li Y, Guo L, Wang Z, Zhang X, Zhao B, Guo Y-D, Zhang N (2020) CRISPR/Cas9 targeted mutagenesis of SlLBD40, a lateral organ boundaries domain transcription factor, enhances drought tolerance in tomato. Plant Sci 301:110683

    Article  CAS  PubMed  Google Scholar 

  129. Bull SE, Seung D, Chanez C, Mehta D, Kuon J-E, Truernit E, Hochmuth A, Zurkirchen I, Zeeman SC, Gruissem W (2018) Accelerated ex situ breeding of GBSS-and PTST1-edited cassava for modified starch. Sci Adv 4:eaat6086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Hummel AW, Chauhan RD, Cermak T, Mutka AM, Vijayaraghavan A, Boyher A, Starker CG, Bart R, Voytas DF, Taylor NJ (2018) Allele exchange at the EPSPS locus confers glyphosate tolerance in cassava. Plant Biotechnol J 16:1275–1282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Nakayasu M, Akiyama R, Lee HJ, Osakabe K, Osakabe Y, Watanabe B, Sugimoto Y, Umemoto N, Saito K, Muranaka T (2018) Generation of α-solanine-free hairy roots of potato by CRISPR/Cas9 mediated genome editing of the St16DOX gene. Plant Physiol Biochem 131:70–77

    Article  CAS  PubMed  Google Scholar 

  132. Tuncel A, Corbin KR, Ahn-Jarvis J, Harris S, Hawkins E, Smedley MA, Harwood W, Warren FJ, Patron NJ, Smith AM (2019) Cas9-mediated mutagenesis of potato starch-branching enzymes generates a range of tuber starch phenotypes. Plant Biotechnol J 17:2259–2271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. González MN, Massa GA, Andersson M, Turesson H, Olsson N, Fält A-S, Storani L, Décima Oneto CA, Hofvander P, Feingold SE (2020) Reduced enzymatic browning in potato tubers by specific editing of a polyphenol oxidase gene via ribonucleoprotein complexes delivery of the CRISPR/Cas9 system. Front Plant Sci 10:1649

    Article  PubMed  PubMed Central  Google Scholar 

  134. Chandrasekaran J, Brumin M, Wolf D, Leibman D, Klap C, Pearlsman M, Sherman A, Arazi T, Gal-On A (2016) Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology. Mol Plant Pathol 17:1140–1153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Wang Z, Wang S, Li D, Zhang Q, Li L, Zhong C, Liu Y, Huang H (2018) Optimized paired-sgRNA / Cas9 cloning and expression cassette triggers high-efficiency multiplex genome editing in kiwifruit. 1424–1433. https://doi.org/10.1111/pbi.12884.

  136. Peng A, Chen S, Lei T, Xu L, He Y, Wu L, Yao L, Zou X (2017) Engineering canker-resistant plants through CRISPR/Cas9-targeted editing of the susceptibility gene Cs LOB 1 promoter in citrus. Plant Biotechnol J 15:1509–1519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Tian S, Jiang L, Cui X, Zhang J, Guo S, Li M, Zhang H, Ren Y, Gong G, Zong M (2018) Engineering herbicide-resistant watermelon variety through CRISPR/Cas9-mediated base-editing. Plant Cell Rep 37:1353–1356

    Article  CAS  PubMed  Google Scholar 

  138. Zhang H, Si X, Ji X, Fan R, Liu J, Chen K, Wang D, Gao C (2018) Genome editing of upstream open reading frames enables translational control in plants. Nat Biotechnol 36:894–898

    Article  CAS  PubMed  Google Scholar 

  139. Wang H, Wu Y, Zhang Y, Yang J, Fan W, Zhang H (2019), CRISPR/Cas9-based mutagenesis of starch biosynthetic genes in sweet potato (Ipomoea Batatas ) for the improvement of starch quality

  140. Kaur N, Alok A, Kaur N, Pandey P, Awasthi P, Tiwari S (2018) CRISPR/Cas9-mediated efficient editing in phytoene desaturase (PDS) demonstrates precise manipulation in banana cv. Rasthali genome. Funct Integr Genom 18:89–99

    Article  CAS  Google Scholar 

  141. Kaur N, Alok A, Kumar P, Kaur N, Awasthi P, Chaturvedi S, Pandey P, Pandey A, Pandey AK, Tiwari S (2020) CRISPR / Cas9 directed editing of lycopene epsilon-cyclase modulates metabolic flux for β-carotene biosynthesis in banana fruit. Metab. Eng. 59:76–86. https://doi.org/10.1016/j.ymben.2020.01.008

    Article  CAS  PubMed  Google Scholar 

  142. Waltz E (2016) CRISPR-edited crops free to enter market, skip regulation. Nat Publ Gr 34:582. https://doi.org/10.1038/nbt0616-582

    Article  CAS  Google Scholar 

  143. Urnov FD, Ronald PC, Carroll D (2018) A call for science-based review of the European court’s decision on gene-edited crops. Nat Biotechnol 36:800–802

    Article  CAS  PubMed  Google Scholar 

  144. Zhang (2016) CRISPR could usher in a new era of delicious GMO foods. Atl

  145. Xu X, Yuan Y, Feng B, Deng W (2020) CRISPR/Cas9-mediated gene-editing technology in fruit quality improvement. Food Qual Saf 4:159–166

    Article  CAS  Google Scholar 

  146. Fan D, Liu T, Li C, Jiao B, Li S, Hou Y, Luo K (2015) Efficient CRISPR/Cas9-mediated targeted mutagenesis in Populus in the first generation. Sci Rep 5:1–7

    CAS  Google Scholar 

  147. Liao P, Li S, Cui X, Zheng Y (2018) A comprehensive review of web-based resources of non-coding RNAs for plant science research. Int J Biol Sci 14:819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Dale J, James A, Paul J-Y, Khanna H, Smith M, Peraza-Echeverria S, Garcia-Bastidas F, Kema G, Waterhouse P, Mengersen K (2017) Transgenic cavendish bananas with resistance to fusarium wilt tropical race 4. Nat Commun 8:1–8

    Article  CAS  Google Scholar 

Download references

Acknowledgements

KMB thank the Director, ICAR-IIRR and DST-SERB ECR/2017/003133 project for providing resources for research work. NDM aknowledge DST-SERB Project ECR/2017/003133 for providing Junior Research Fellowship.

Funding

ICAR-IIRR Core budget and DST-SERB ECR/2017/003133.

Author information

Authors and Affiliations

Authors

Contributions

PS and NDM drafted the manuscript and contributed equally. KMB criticallysupervised and corrected the review.

Corresponding author

Correspondence to Kalyani M. Barbadikar.

Ethics declarations

Conflict of interest

The authors declare that they do not have any conflict of interest.

Ethical approval

No ethical approval is required as the review does not include any participatory animal or human studies.

Informed consent

The authors have read the review thoroughly and give consent for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, P., Magar, N.D. & Barbadikar, K.M. Current technological interventions and applications of CRISPR/Cas for crop improvement. Mol Biol Rep 49, 5751–5770 (2022). https://doi.org/10.1007/s11033-021-06926-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06926-5

Keywords

Navigation