Skip to main content
Log in

The role of TRPV channels in osteoporosis

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

As the world’s population ages, the treatment of osteoporosis is a major problem to be addressed. The cause of osteoporosis remains unclear. Ca2+ is not only an important component of bones but also plays a key role in osteoporosis treatment. Transient receptor potential vanilloid (TRPV) channels are one of the TRP channel families that is widely distributed in various organs, playing an important role in the physiological regulation of the human body. Bone formation and bone absorption may require Ca2+ transport via TRPV channels. It has been proven that the TRPV subtypes 1, 2, 4, 5, 6 (TRPV1, TRPV2, TRPV4, TRPV5, TRPV6) may affect bone metabolism balance through selective regulation of Ca2+. They significantly regulate osteoblast/osteoclast proliferation, differentiation and function. The purpose of this review is to explore the mechanisms of TRPV channels involved in regulation of the differentiation of osteoblasts and osteoclasts, as well as to discuss the latest developments in current researches, which may provide new clues and directions for an in-depth study of osteoporosis and other related bone metabolic diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lane JM, Russell L, Khan SN (2000) Osteoporosis. Clin Orthop Relat Res 372:139–150

  2. Baccaro LF et al (2015) The epidemiology and management of postmenopausal osteoporosis: a viewpoint from Brazil. Clin Interv Aging 10:583–591

    Article  PubMed  PubMed Central  Google Scholar 

  3. Rachner TD, Khosla S, Hofbauer LC (2011) Osteoporosis: now and the future. Lancet 377(9773):1276–1287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bernabei R et al (2014) Screening, diagnosis and treatment of osteoporosis: a brief review. Clin Cases Miner Bone Metab 11(3):201–207

    PubMed  PubMed Central  Google Scholar 

  5. Li J et al (2019) TMCO1-mediated Ca(2+) leak underlies osteoblast functions via CaMKII signaling. Nat Commun 10(1):1589

    Article  PubMed  PubMed Central  Google Scholar 

  6. Cao C et al (2017) Increased Ca2+ signaling through CaV1.2 promotes bone formation and prevents estrogen deficiency-induced bone loss. JCI Insight 2(22):e95512

    Article  PubMed Central  Google Scholar 

  7. Sato M et al (2010) A nonsecosteroidal vitamin D receptor ligand with improved therapeutic window of bone efficacy over hypercalcemia. J Bone Miner Res 25(6):1326–1336

    Article  CAS  PubMed  Google Scholar 

  8. Mirkin S, Pickar JH (2015) Selective estrogen receptor modulators (SERMs): a review of clinical data. Maturitas 80(1):52–57

    Article  CAS  PubMed  Google Scholar 

  9. Robinson LJ et al (2019) The roles of Orai and Stim in bone health and disease. Cell Calcium 81:51–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nilius B, Owsianik G (2011) The transient receptor potential family of ion channels. Genome Biol 12(3):218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zamponi GW (2017) A crash course in calcium channels. ACS Chem Neurosci 8(12):2583–2585

    Article  CAS  PubMed  Google Scholar 

  12. Katsianou MA et al (2018) The role of transient receptor potential polycystin channels in bone diseases. Ann Transl Med 6(12):246

    Article  PubMed  PubMed Central  Google Scholar 

  13. Caterina MJ (2014) TRP channel cannabinoid receptors in skin sensation, homeostasis, and inflammation. ACS Chem Neurosci 5(11):1107–1116

    Article  CAS  PubMed  Google Scholar 

  14. Kaneko Y, Szallasi A (2014) Transient receptor potential (TRP) channels: a clinical perspective. Br J Pharmacol 171(10):2474–2507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Messeguer A, Planells-Cases R, Ferrer-Montiel A (2006) Physiology and pharmacology of the vanilloid receptor. Curr Neuropharmacol 4(1):1–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Haustrate A, Prevarskaya N et al (2020) Role of the TRPV channels in the endoplasmic reticulum calcium homeostasis. Cells 9(2):317

    Article  CAS  PubMed Central  Google Scholar 

  17. Nilius B, Szallasi A (2014) Transient receptor potential channels as drug targets: from the science of basic research to the art of medicine. Pharmacol Rev 66(3):676–814

    Article  PubMed  Google Scholar 

  18. Rossi F et al (2015) CB(2) and TRPV(1) receptors oppositely modulate in vitro human osteoblast activity. Pharmacol Res 99:194–201

    Article  CAS  PubMed  Google Scholar 

  19. Suzuki Y, Landowski CP, Hediger MA (2008) Mechanisms and regulation of epithelial Ca2+ absorption in health and disease. Annu Rev Physiol 70:257–271

    Article  CAS  PubMed  Google Scholar 

  20. Hoenderop JG, Nilius B, Bindels RJ (2002) Molecular mechanism of active Ca2+ reabsorption in the distal nephron. Annu Rev Physiol 64:529–549

    Article  CAS  PubMed  Google Scholar 

  21. van Goor MKC, Hoenderop JGJ, van der Wijst J (2017) TRP channels in calcium homeostasis: from hormonal control to structure-function relationship of TRPV5 and TRPV6. Biochim Biophys Acta Mol Cell Res 1864(6):883–893

    Article  PubMed  Google Scholar 

  22. Chamoux E et al (2010) TRPV-5 mediates a receptor activator of NF-kappaB (RANK) ligand-induced increase in cytosolic Ca2+ in human osteoclasts and down-regulates bone resorption. J Biol Chem 285(33):25354–25362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Idris AI, Landao-Bassonga E, Ralston SH (2010) The TRPV1 ion channel antagonist capsazepine inhibits osteoclast and osteoblast differentiation in vitro and ovariectomy induced bone loss in vivo. Bone 46(4):1089–1099

    Article  CAS  PubMed  Google Scholar 

  24. Masuyama R et al (2008) TRPV4-mediated calcium influx regulates terminal differentiation of osteoclasts. Cell Metab 8(3):257–265

    Article  CAS  PubMed  Google Scholar 

  25. Caterina MJ et al (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389(6653):816–824

    Article  CAS  PubMed  Google Scholar 

  26. Duo L et al (2018) TRPV1 gain-of-function mutation impairs pain and itch sensations in mice. Mol Pain 14:1744806918762031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Peng J, Li YJ (2010) The vanilloid receptor TRPV1: role in cardiovascular and gastrointestinal protection. Eur J Pharmacol 627(1-3):1–7

    Article  CAS  PubMed  Google Scholar 

  28. He LH et al (2017) TRPV1 deletion impaired fracture healing and inhibited osteoclast and osteoblast differentiation. Sci Rep 7:42385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hanaka M et al (2018) Antagonists to TRPV1, ASICs and P2X have a potential role to prevent the triggering of regional bone metabolic disorder and pain-like behavior in tail-suspended mice. Bone 110:284–294

    Article  CAS  PubMed  Google Scholar 

  30. Yoshino K et al (2014) Increase of TRPV1-immunoreactivity in dorsal root ganglia neurons innervating the femur in a rat model of osteoporosis. Yonsei Med J 55(6):1600–1605

    Article  PubMed  PubMed Central  Google Scholar 

  31. Rossi F et al (2014) The genetic ablation or pharmacological inhibition of TRPV1 signalling is beneficial for the restoration of quiescent osteoclast activity in ovariectomized mice. Br J Pharmacol 171(10):2621–2630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bellini G et al (2017) PKCβII-mediated cross-talk of TRPV1/CB2 modulates the glucocorticoid-induced osteoclast overactivity. Pharmacol Res 115:267–274

    Article  CAS  PubMed  Google Scholar 

  33. Rossi F et al (2011) The endovanilloid/endocannabinoid system: a new potential target for osteoporosis therapy. Bone 48(5):997–1007

    Article  CAS  PubMed  Google Scholar 

  34. Detsch R, Boccaccini AR (2015) The role of osteoclasts in bone tissue engineering. J Tissue Eng Regen Med 9(10):1133–1149

    Article  CAS  PubMed  Google Scholar 

  35. Pan L et al (2013) Nitric oxide induces apoptosis associated with TRPV1 channel-mediated Ca(2+) entry via S-nitrosylation in osteoblasts. Eur J Pharmacol 715(1-3):280–285

    Article  CAS  PubMed  Google Scholar 

  36. Chi B et al (2019) Identification of Gli1-interacting proteins during simvastatin-stimulated osteogenic differentiation of bone marrow mesenchymal stem cells. J Cell Biochem 120(11):18979–18994

    Article  CAS  PubMed  Google Scholar 

  37. Ye C et al (2019) Extracellular IL-37 promotes osteogenic differentiation of human bone marrow mesenchymal stem cells via activation of the PI3K/AKT signaling pathway. Cell Death Dis 10(10):753

    Article  PubMed  PubMed Central  Google Scholar 

  38. Cawthorn WP et al (2012) Wnt6, Wnt10a and Wnt10b inhibit adipogenesis and stimulate osteoblastogenesis through a β-catenin-dependent mechanism. Bone 50(2):477–489

    Article  CAS  PubMed  Google Scholar 

  39. Ren M et al (2016) Role of VR1 in the differentiation of bone marrow-derived mesenchymal stem cells into cardiomyocytes associated with Wnt/β-catenin signaling. Cardiovasc Ther 34(6):482–488

    Article  CAS  PubMed  Google Scholar 

  40. Caterina MJ et al (1999) A capsaicin-receptor homologue with a high threshold for noxious heat. Nature 398(6726):436–441

    Article  CAS  PubMed  Google Scholar 

  41. Park U et al (2011) TRP vanilloid 2 knock-out mice are susceptible to perinatal lethality but display normal thermal and mechanical nociception. J Neurosci 31(32):11425–11436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Koch SE et al (2012) Probenecid: novel use as a non-injurious positive inotrope acting via cardiac TRPV2 stimulation. J Mol Cell Cardiol 53(1):134–144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kajiya H et al (2010) RANKL-induced TRPV2 expression regulates osteoclastogenesis via calcium oscillations. Cell Calcium 48(5):260–269

    Article  CAS  PubMed  Google Scholar 

  44. Berridge MJ, Bootman MD, Roderick HL (2003) Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 4(7):517–529

    Article  CAS  PubMed  Google Scholar 

  45. Bai H et al (2018) TRPV2-induced Ca(2+)-calcineurin-NFAT signaling regulates differentiation of osteoclast in multiple myeloma. Cell Commun Signal 16(1):68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Barengolts EI et al (1998) Osteoporosis and coronary atherosclerosis in asymptomatic postmenopausal women. Calcif Tissue Int 62(3):209–213

    Article  CAS  PubMed  Google Scholar 

  47. Fallah A et al (2013) Lysophosphatidylcholine-induced cytotoxicity in osteoblast-like MG-63 cells: involvement of transient receptor potential vanilloid 2 (TRPV2) channels. Mol Membr Biol 30(5-6):315–326

    Article  CAS  PubMed  Google Scholar 

  48. Li Y et al (2011) Nicotinamide phosphoribosyltransferase (Nampt) affects the lineage fate determination of mesenchymal stem cells: a possible cause for reduced osteogenesis and increased adipogenesis in older individuals. J Bone Miner Res 26(11):2656–2664

    Article  CAS  PubMed  Google Scholar 

  49. Hu L et al (2018) Mesenchymal stem cells: cell fate decision to osteoblast or adipocyte and application in osteoporosis treatment. Int J Mol Sci 19(2):360

    Article  PubMed Central  Google Scholar 

  50. Hardouin P, Marie PJ, Rosen CJ (2016) New insights into bone marrow adipocytes: report from the First European Meeting on Bone Marrow Adiposity (BMA 2015). Bone 93:212–215

    Article  PubMed  Google Scholar 

  51. Uchida K et al (2017) Involvement of thermosensitive TRP channels in energy metabolism. J Physiol Sci 67(5):549–560

    Article  CAS  PubMed  Google Scholar 

  52. Sun W et al (2016) Lack of TRPV2 impairs thermogenesis in mouse brown adipose tissue. EMBO Rep 17(3):383–399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sun W et al (2016) Activation of TRPV2 negatively regulates the differentiation of mouse brown adipocytes. Pflug Arch 468(9):1527–1540

    Article  CAS  Google Scholar 

  54. Yang P, Zhu MX (2014) TRPV3. Handb Exp Pharmacol 22:273-291

  55. Uchida K et al (2018) Role of thermo-sensitive transient receptor potential channels in brown adipose tissue. Biol Pharm Bull 41(8):1135–1144

    Article  CAS  PubMed  Google Scholar 

  56. Han J et al (2018) Total flavone of rhododendron improves cerebral ischemia injury by activating vascular TRPV4 to induce endothelium-derived hyperpolarizing factor-mediated responses. Evid Based Complement Alternat Med 2018:8919867

    Article  PubMed  PubMed Central  Google Scholar 

  57. Son A et al (2018) TRPM3/TRPV4 regulates Ca2+-mediated RANKL/NFATc1 expression in osteoblasts. J Mol Endocrinol 61(4):207–218

    Article  CAS  PubMed  Google Scholar 

  58. Everaerts W, Nilius B, Owsianik G (2010) The vanilloid transient receptor potential channel TRPV4: from structure to disease. Prog Biophys Mol Biol 103(1):2–17

    Article  CAS  PubMed  Google Scholar 

  59. Rock MJ et al (2008) Gain-of-function mutations in TRPV4 cause autosomal dominant brachyolmia. Nat Genet 40(8):999–1003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kajiya H (2012) Calcium signaling in osteoclast differentiation and bone resorption. Adv Exp Med Biol 740:917–932

    Article  CAS  PubMed  Google Scholar 

  61. Li P et al (2018) STIM1 and TRPV4 regulate fluid flow-induced calcium oscillation at early and late stages of osteoclast differentiation. Cell Calcium 71:45–52

    Article  CAS  PubMed  Google Scholar 

  62. Cao B, Dai X, Wang W (2019) Knockdown of TRPV4 suppresses osteoclast differentiation and osteoporosis by inhibiting autophagy through Ca(2+) -calcineurin-NFATc1 pathway. J Cell Physiol 234(5):6831–6841

    Article  CAS  PubMed  Google Scholar 

  63. Inada H et al (2012) Structural and biochemical consequences of disease-causing mutations in the ankyrin repeat domain of the human TRPV4 channel. Biochemistry 51(31):6195–6206

    Article  CAS  PubMed  Google Scholar 

  64. Nishimura H et al (2020) Transient receptor potential vanilloid 1 and 4 double knockout leads to increased bone mass in mice. Bone Rep 12:100268

    Article  PubMed  PubMed Central  Google Scholar 

  65. Lee KL et al (2015) The primary cilium functions as a mechanical and calcium signaling nexus. Cilia 4:7

    Article  PubMed  PubMed Central  Google Scholar 

  66. Moore ER et al (2018) Adenylyl cyclases and TRPV4 mediate Ca(2+)/cAMP dynamics to enhance fluid flow-induced osteogenesis in osteocytes. J Mol Biochem 7:48–59

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Williams KM et al (2020) TRPV4 calcium influx controls sclerostin protein loss independent of purinergic calcium oscillations. Bone 136:115356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Schoeber JP, Hoenderop JG, Bindels RJ (2007) Concerted action of associated proteins in the regulation of TRPV5 and TRPV6. Biochem Soc Trans 35(Pt 1):115–119

    Article  CAS  PubMed  Google Scholar 

  69. Diaz de Barboza G, Guizzardi S et al (2015) Molecular aspects of intestinal calcium absorption. World J Gastroenterol 21(23):7142–7154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Barry EL (2000) Expression of mRNAs for the alpha 1 subunit of voltage-gated calcium channels in human osteoblast-like cell lines and in normal human osteoblasts. Calcif Tissue Int 66(2):145–150

    Article  CAS  PubMed  Google Scholar 

  71. van de Graaf SF et al (2004) Regulation of the epithelial Ca2+ channels TRPV5 and TRPV6 by 1alpha,25-dihydroxy Vitamin D3 and dietary Ca2+. J Steroid Biochem Mol Biol 89-90(1-5):303–308

    Article  PubMed  Google Scholar 

  72. van Abel M et al (2006) Age-dependent alterations in Ca2+ homeostasis: role of TRPV5 and TRPV6. Am J Physiol Renal Physiol 291(6):F1177–F1183

    Article  PubMed  Google Scholar 

  73. Lu P et al (2008) The beta-glucuronidase klotho exclusively activates the epithelial Ca2+ channels TRPV5 and TRPV6. Nephrol Dial Transplant 23(11):3397–3402

    Article  CAS  PubMed  Google Scholar 

  74. Ko B (2017) Parathyroid hormone and the regulation of renal tubular calcium transport. Curr Opin Nephrol Hypertens 26(5):405–410

    Article  CAS  PubMed  Google Scholar 

  75. de Groot T et al (2009) Parathyroid hormone activates TRPV5 via PKA-dependent phosphorylation. J Am Soc Nephrol 20(8):1693–1704

    Article  PubMed  PubMed Central  Google Scholar 

  76. Hoover RS et al (2016) PTH modulation of NCC activity regulates TRPV5 Ca2+ reabsorption. Am J Physiol Renal Physiol 310(2):F144–F151

    Article  CAS  PubMed  Google Scholar 

  77. Cai X et al (2014) Regulation of the epithelial Ca2+ channel TRPV5 by reversible histidine phosphorylation mediated by NDPK-B and PHPT1. Mol Biol Cell 25(8):1244–1250

    Article  PubMed  PubMed Central  Google Scholar 

  78. Weber K et al (2001) Gene structure and regulation of the murine epithelial calcium channels ECaC1 and 2. Biochem Biophys Res Commun 289(5):1287–1294

    Article  CAS  PubMed  Google Scholar 

  79. Chen F et al (2014) Estrogen inhibits RANKL-induced osteoclastic differentiation by increasing the expression of TRPV5 channel. J Cell Biochem 115(4):651–658

    Article  CAS  PubMed  Google Scholar 

  80. Gu J et al (2019) Vitamin D inhibition of TRPV5 expression during osteoclast differentiation. Int J Endocrinol Metab 17(4):e91583

    Article  PubMed  PubMed Central  Google Scholar 

  81. Müller D et al (2000) Gene structure and chromosomal mapping of human epithelial calcium channel. Biochem Biophys Res Commun 275(1):47–52

    Article  PubMed  Google Scholar 

  82. Peng JB et al (1999) Molecular cloning and characterization of a channel-like transporter mediating intestinal calcium absorption. J Biol Chem 274(32):22739–22746

    Article  CAS  PubMed  Google Scholar 

  83. Topala CN et al (2009) Activation of the Ca2+-sensing receptor stimulates the activity of the epithelial Ca2+ channel TRPV5. Cell Calcium 45(4):331–339

    Article  CAS  PubMed  Google Scholar 

  84. Pérez AV et al (2008) Minireview on regulation of intestinal calcium absorption. Emphasis on molecular mechanisms of transcellular pathway. Digestion 77(1):22–34

    Article  PubMed  Google Scholar 

  85. Schwarz EC et al (2006) TRPV6 potentiates calcium-dependent cell proliferation. Cell Calcium 39(2):163–173

    Article  CAS  PubMed  Google Scholar 

  86. Thyagarajan B et al (2009) Phospholipase C-mediated regulation of transient receptor potential vanilloid 6 channels: implications in active intestinal Ca2+ transport. Mol Pharmacol 75(3):608–616

    Article  CAS  PubMed  Google Scholar 

  87. Bianco SD et al (2007) Marked disturbance of calcium homeostasis in mice with targeted disruption of the Trpv6 calcium channel gene. J Bone Miner Res 22(2):274–285

    Article  CAS  PubMed  Google Scholar 

  88. Kim MH et al (2009) The negative effect of dexamethasone on calcium-processing gene expressions is associated with a glucocorticoid-induced calcium-absorbing disorder. Life Sci 85(3-4):146–152

    Article  CAS  PubMed  Google Scholar 

  89. Chen HL et al (2015) Kefir improves bone mass and microarchitecture in an ovariectomized rat model of postmenopausal osteoporosis. Osteoporos Int 26(2):589–599

    Article  CAS  PubMed  Google Scholar 

  90. Nijenhuis T et al (2003) Localization and regulation of the epithelial Ca2+ channel TRPV6 in the kidney. J Am Soc Nephrol 14(11):2731–2740

    Article  CAS  PubMed  Google Scholar 

  91. Ishizawa M et al (2017) 1α,25-Dihydroxyvitamin D(3) enhances TRPV6 transcription through p38 MAPK activation and GADD45 expression. J Steroid Biochem Mol Biol 172:55–61

    Article  CAS  PubMed  Google Scholar 

  92. Suzuki Y et al (2020) Novel TRPV6 mutations in the spectrum of transient neonatal hyperparathyroidism. J Physiol Sci 70(1):33

    Article  CAS  PubMed  Google Scholar 

  93. Chen F et al (2014) Knockout of TRPV6 causes osteopenia in mice by increasing osteoclastic differentiation and activity. Cell Physiol Biochem 33(3):796–809

    Article  CAS  PubMed  Google Scholar 

  94. van der Eerden BC et al (2012) The transient receptor potential channel TRPV6 is dynamically expressed in bone cells but is not crucial for bone mineralization in mice. J Cell Physiol 227(5):1951–1959

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by National Key Research and Development Project (No.2017YFB0403801); The Joint Special Program of Science and Technology Department of Yunnan Province and Kunming Medical University for applied basic research [No.2019FE001(-111)]; Application base project of Yunnan Science and Technology Department (No.2019FB097); Yunnan health training project of high level talents (No.D-2018005);Yunnan Fundamental Research Key Projects (No. 202101AS070046);Yunnan High-level Scientific and Technological Talent Platform Plan (No. 202105AC160064).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chongtao Zhu.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Ethical approval

This work does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, N., Lu, W., Dai, X. et al. The role of TRPV channels in osteoporosis. Mol Biol Rep 49, 577–585 (2022). https://doi.org/10.1007/s11033-021-06794-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06794-z

Keywords

Navigation