Skip to main content

Advertisement

Log in

The next step of neurogenesis in the context of Alzheimer’s disease

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Among different pathological mechanisms, neuronal loss and neurogenesis impairment in the hippocampus play important roles in cognitive decline in Alzheimer’s disease (AD). AD is a progressive and complex neurodegenerative diseases, which is very debilitating. The purpose of this paper is to review recent research into neurogenesis and AD and discuss how pharmacological drugs and herbal active components have impacts on neurogenesis and consequently improve cognitive functions. To date, despite huge research, no effective treatment has been approved for AD. Therefore, an avenue for future research and drug discovery is stimulating adult hippocampal neurogenesis (AHN). Evidence suggests that neurogenesis is regulated by the pharmacological treatment that may be recommended as a part of prophylaxis and therapeutic options for AD. However, the underlying mechanisms of regulating neurogenesis in AD are not well understood. To this point, we highlight to achieve an efficient treatment in AD by manipulating neurogenesis, it’s necessary to target all steps of neurogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

AD:

Alzheimer’s disease

AHN:

Adult hippocampal neurogenesis

Aβ-P:

β-Amyloid plaques

Aβ:

β-Amyloid

AChEIs:

Acetylcholinesterase inhibitors

DMTs:

Disease-modifying therapies

NMDA:

N-methyl-D-aspartate

SGZ:

Subgranular zone

HDG:

Hippocampal dentate gyrus

NSCs:

Neural stem cells

NS/PCs:

Neural stem/progenitor cells

SVZ:

Subventricular zone

BDNF:

Brain-derived neurotrophic factor

NPCs:

Neural precursor cells

CREB:

CAMP response element-binding protein

BrdU:

Bromodeoxyuridine labeling

GSK3beta:

Glycogen synthase kinase 3 beta

MAPK:

Mitogen-activated protein kinase

IGF2:

Insulin-like growth factor 2

BuChEI:

Butyrylcholinesterase inhibitor

APP/PS1:

Amyloid precursor protein/presenilin-1

PI3K/AKT:

Phosphatidylinositol-3-kinase/protein kinase B

SAD:

Sporadic Alzheimer’s disease

ICV-STZ:

Intracerebroventricular-streptozocin

References

  1. Urban N, Guillemot F (2014) Neurogenesis in the embryonic and adult brain:same regulators, different roles. Front Cell Neurosci 8:396. https://doi.org/10.3389/fncel.2014.00396

    Article  PubMed  PubMed Central  Google Scholar 

  2. Altman J, Das GD (1965) Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol 124:319–335. https://doi.org/10.1002/cne.901240303

    Article  CAS  PubMed  Google Scholar 

  3. Kuhn HG, Dickinson-Anson H, Gage FH (1996) Neurogenesis in the dentate gyrus of the adult rat:age-related decrease of neuronal progenitor proliferation. J Neurosci 16:2027–2033. https://doi.org/10.1523/JNEUROSCI.16-06-02027.1996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Taupin P, Gage FH (2002) Adult neurogenesis and neural stem cells of the central nervous system in mammals. J Neurosci 69:745–749. https://doi.org/10.1002/jnr.10378

    Article  CAS  Google Scholar 

  5. da Silva SV, Zhang P, Haberl MG, Labrousse V, Grosjean N, Blanchet C et al (2019) Hippocampal mossy fibers synapses in CA3 pyramidal cells are altered at an early stage in a mouse model of Alzheimer’s disease. J Neurosci 39:4193–4205. https://doi.org/10.1523/JNEUROSCI.2868-18.2019

    Article  Google Scholar 

  6. Scopa C, Marrocco F, Latina V, Ruggeri F, Corvaglia V, La Regina F et al (2020) Impaired adult neurogenesis is an early event in Alzheimer’s disease neurodegeneration, mediated by intracellular Aβ oligomers. Cell Death Differ 27:934–948. https://doi.org/10.1038/s41418-019-0409-3

    Article  CAS  PubMed  Google Scholar 

  7. Zheng J, Li HL, Tian N, Liu F, Wang L, Yin Y, Yue L, Ma L, Wan Y, Wang JZ (2020) Interneuron accumulation of phosphorylated tau impairs adult hippocampal neurogenesis by suppressing GABAergic transmission. Cell Stem Cell 26(3):331–345. https://doi.org/10.1016/j.stem.2019.12.015

    Article  CAS  PubMed  Google Scholar 

  8. Cosacak MI, Bhattarai P, Kizil C (2020) Alzheimer’s disease, neural stem cells and neurogenesis:cellular phase at single-cell level. Neural Regen Res 15:824. https://doi.org/10.4103/1673-5374.268896

    Article  PubMed  Google Scholar 

  9. Mohammad Sadeghi S, Sahab Negah S, Khaksar Z, Kazemi H, Aligholi H (2014) Laminin position as one of the important components of the extracellular matrix in tissue engineering of nervous system. Neurosci J Shefaye Khatam 2:69–74. https://doi.org/10.18869/acadpub.shefa.2.1.69

    Article  Google Scholar 

  10. Mayeux R, Stern Y (2012) Epidemiology of Alzheimer disease. Cold Spring Harb Perspect Med 2:a006239. https://doi.org/10.1101/cshperspect.a006239

    Article  PubMed  PubMed Central  Google Scholar 

  11. Iqbal K, Liu F, Gong CX, Grundke-Iqbal I (2010) Tau in Alzheimer disease and related tauopathies. Curr Alzheimer Res 7:656–664. https://doi.org/10.2174/156720510793611592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Galimberti D, Scarpini E (2016) Old and new acetylcholinesterase inhibitors for Alzheimer’s disease. Expert Opin Investig Drugs 25:1181–1187. https://doi.org/10.1080/13543784.2016.1216972

    Article  CAS  PubMed  Google Scholar 

  13. Folch J, Petrov D, Ettcheto M, Abad S, Sanchez-Lopez E, Garcia ML et al (2016) Current research therapeutic strategies for Alzheimer’s disease treatment. Neural Plast 2016:8501693. https://doi.org/10.1155/2016/8501693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yiannopoulou KG, Papageorgiou SG (2013) Current and future treatments for Alzheimer’s disease. Ther Adv Neurol Disord 6:19–33. https://doi.org/10.1177/1756285612461679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jellinger KA (2020) Neuropathological assessment of the Alzheimer spectrum. J Neural Transm 127:1229–1256. https://doi.org/10.1007/s00702-020-02232-9

    Article  CAS  PubMed  Google Scholar 

  16. Hu YS, Xu P, Pigino G, Brady ST, Larson J, Lazarov O (2010) Complex environment experience rescues impaired neurogenesis, enhances synaptic plasticity, and attenuates neuropathology in familial Alzheimer’s disease-linked APPswe/PS1ΔE9 mice. FASEB J 24:1667–1681. https://doi.org/10.1096/fj.09-136945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Marlatt MW, Lucassen PJ (2010) Neurogenesis and Alzheimer’s disease:biology and pathophysiology in mice and men. Curr Alzheimer Res 7:113–125. https://doi.org/10.2174/156720510790691362

    Article  CAS  PubMed  Google Scholar 

  18. Moreno-Jimenez EP, Terreros-Roncal J, Flor-Garcia M, Rabano A, Llorens-Martin M (2021) Evidences for adult hippocampal neurogenesis in humans. J Neurosci 41(12):2541–2553. https://doi.org/10.1523/jneurosci.0675-20.2020

    Article  CAS  PubMed  Google Scholar 

  19. Tobin MK, Musaraca K, Disouky A, Shetti A, Bheri A, Honer WG et al (2019) Human hippocampal neurogenesis persists in aged adults and Alzheimer’s disease patients. Cell Stem Cell 24(6):974–982. https://doi.org/10.1016/j.stem.2019.05.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sahab Negah S, Hajali V, Moradi HR, Gorji A (2020) The impact of estradiol on neurogenesis and cognitive functions in Alzheimer’s disease. Cell Mol Neurobiol 40:283–299. https://doi.org/10.1007/s10571-019-00733-0

    Article  CAS  PubMed  Google Scholar 

  21. Giacconi R, Giuli C, Casoli T, Balietti M, Costarelli L, Provinciali M et al (2019) Acetylcholinesterase inhibitors in Alzheimer’s disease influence Zinc and Copper homeostasis. J Trace Elem Med Biol 55:58–63. https://doi.org/10.1016/j.jtemb.2019.06.001

    Article  CAS  PubMed  Google Scholar 

  22. Kotani S, Yamauchi T, Teramoto T, Ogura H (2008) Donepezil, an acetylcholinesterase inhibitor, enhances adult hippocampal neurogenesis. Chem Biol Interact 175:227–230. https://doi.org/10.1016/j.cbi.2008.04.004

    Article  CAS  PubMed  Google Scholar 

  23. Kwon KJ, Kim MK, Lee EJ, Kim JN, Choi BR, Kim SY et al (2014) Effects of donepezil, an acetylcholinesterase inhibitor, on neurogenesis in a rat model of vascular dementia. J Neurol Sci 347:66–77. https://doi.org/10.1016/j.jns.2014.09.021

    Article  CAS  PubMed  Google Scholar 

  24. Itou Y, Nochi R, Kuribayashi H, Saito Y, Hisatsune T (2011) Cholinergic activation of hippocampal neural stem cells in aged dentate gyrus. Hippocampus 21:446–459. https://doi.org/10.1002/hipo.20761

    Article  CAS  PubMed  Google Scholar 

  25. Kita Y, Ago Y, Higashino K, Asada K, Takano E, Takuma K et al (2014) Galantamine promotes adult hippocampal neurogenesis via M1 muscarinic and α7 nicotinic receptors in mice. Int J Neuropsychopharmacol 17:1957–1968. https://doi.org/10.1017/S1461145714000613

    Article  CAS  PubMed  Google Scholar 

  26. Jin K, Xie L, Mao XO, Greenberg DA (2006) Alzheimer’s disease drugs promote neurogenesis. Brain Res 1085:183–188. https://doi.org/10.1016/j.brainres.2006.02.081

    Article  CAS  PubMed  Google Scholar 

  27. Barnes CA, Meltzer J, Houston F, Orr G, McGann K, Wenk G (2000) Chronic treatment of old rats with donepezil or galantamine:effects on memory, hippocampal plasticity and nicotinic receptors. Neuroscience 99:17–23. https://doi.org/10.1016/s0306-4522(00)00180-9

    Article  CAS  PubMed  Google Scholar 

  28. Islam M, Moriguchi S, Tagashira H, Fukunaga K (2014) Rivastigmine improves hippocampal neurogenesis and depression-like behaviors via 5-HT1A receptor stimulation in olfactory bulbectomized mice. Neuroscience 272:116–130. https://doi.org/10.1016/j.neuroscience.2014.04.046

    Article  CAS  PubMed  Google Scholar 

  29. Bailey JA, Lahiri DK (2010) A novel effect of rivastigmine on pre-synaptic proteins and neuronal viability in a neurodegeneration model of fetal rat primary cortical cultures and its implication in Alzheimer’s disease. J Neurochem 112:843–853. https://doi.org/10.1111/j.1471-4159.2009.06490.x

    Article  CAS  PubMed  Google Scholar 

  30. Huang LK, Chao SP, Hu CJ (2020) Clinical trials of new drugs for Alzheimer disease. J Biomed Sci 27:1–13. https://doi.org/10.1186/s12929-019-0609-7

    Article  CAS  Google Scholar 

  31. Nygaard HB, Wagner AF, Bowen GS, Good SP, MacAvoy MG, Strittmatter KA et al (2015) A phase Ib multiple ascending dose study of the safety, tolerability, and central nervous system availability of AZD0530 (saracatinib) in Alzheimer’s disease. Alzheimer’s Res Ther 7:35. https://doi.org/10.1186/s13195-015-0119-0

    Article  CAS  Google Scholar 

  32. Green RC, Schneider LS, Amato DA, Beelen AP, Wilcock G, Swabb EA et al (2009) Effect of tarenflurbil on cognitive decline and activities of daily living in patients with mild Alzheimer disease:a randomized controlled trial. JAMA 302:2557–2564. https://doi.org/10.1001/jama.2009.1866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Maekawa M, Namba T, Suzuki E, Yuasa S, Kohsaka S, Uchino S (2009) NMDA receptor antagonist memantine promotes cell proliferation and production of mature granule neurons in the adult hippocampus. Neurosci Res 63:259–266. https://doi.org/10.1016/j.neures.2008.12.006

    Article  CAS  PubMed  Google Scholar 

  34. Morrone CD, Thomason LA, Brown ME, Aubert I, McLaurin J (2016) Effects of neurotrophic support and amyloid-targeted combined therapy on adult hippocampal neurogenesis in a transgenic model of Alzheimer’s disease. PLoS ONE 11:e0165393. https://doi.org/10.1371/journal.pone.0165393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ray B, Maloney B, Sambamurti K, Kumar Karnati H, Nelson PT (2020) Rivastigmine modifies the α-secretase pathway and potentially early Alzheimer’s disease. Transl Psychiatry 10:1–17. https://doi.org/10.1038/s41398-020-0709-x

    Article  CAS  Google Scholar 

  36. Minkeviciene R, Banerjee P, Tanila H (2004) Memantine improves spatial learning in a transgenic mouse model of Alzheimer’s disease. J Pharmacol Exp Ther 311:677–682. https://doi.org/10.1124/jpet.104.071027

    Article  CAS  PubMed  Google Scholar 

  37. Martinez-Coria H, Green KN, Billings LM, Kitazawa M, Albrecht M, Rammes G et al (2010) Memantine improves cognition and reduces Alzheimer’s-like neuropathology in transgenic mice. Am J Pathol 176:870–880. https://doi.org/10.2353/ajpath.2010.090452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Dong H, Yuede CM, Coughlan C, Lewis B, Csernansky JG (2008) Effects of memantine on neuronal structure and conditioned fear in the Tg2576 mouse model of Alzheimer’s disease. Neuropsychopharmacology 33:3226–3236. https://doi.org/10.1038/npp.2008.53

    Article  CAS  PubMed  Google Scholar 

  39. Salloway S, Sperling R, Fox NC, Blennow K, Klunk W, Raskind M et al (2014) Two phase 3 trials of bapineuzumab in mild-to-moderate Alzheimer’s disease. N Engl J Med 370:322–333. https://doi.org/10.1056/NEJMoa1304839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rinne JO, Brooks DJ, Rossor MN, Fox NC, Bullock R, Klunk WE et al (2010) 11C-PiB PET assessment of change in fibrillar amyloid-β load in patients with Alzheimer’s disease treated with bapineuzumab:a phase 2, double-blind, placebo-controlled, ascending-dose study. Lancet Neurol 9:363–372. https://doi.org/10.1016/S1474-4422(10)70043-0

    Article  CAS  PubMed  Google Scholar 

  41. Jacobsen H, Ozmen L, Caruso A, Narquizian R, Hilpert H, Jacobsen B et al (2014) Combined treatment with a BACE inhibitor and anti-Aβ antibody gantenerumab enhances amyloid reduction in APPLondon mice. J Neurosci 34:11621–11630. https://doi.org/10.1523/JNEUROSCI.1405-14.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bohrmann B, Baumann K, Benz J, Gerber F, Huber W, Knoflach F et al (2012) Gantenerumab: a novel human anti-Aβ antibody demonstrates sustained cerebral amyloid-β binding and elicits cell-mediated removal of human amyloid-β. J Alzheimers Dis 28:49–69. https://doi.org/10.3233/JAD-2011-110977

    Article  CAS  PubMed  Google Scholar 

  43. Landen JW, Andreasen N, Cronenberger CL, Schwartz PF, Borjesson-Hanson A, Ostlund H et al (2017) Ponezumab in mild-to-moderate Alzheimer’s disease: randomized phase II PET-PIB study. Alzheimers Dement (N Y) 3:393–401. https://doi.org/10.1016/j.trci.2017.05.003

    Article  Google Scholar 

  44. Congdon EE, Wu JW, Myeku N, Figueroa YH, Herman M, Marinec PS et al (2012) Methylthioninium chloride (methylene blue) induces autophagy and attenuates tauopathy in vitro and in vivo. Autophagy 8:609–622. https://doi.org/10.4161/auto.19048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Deiana S, Harrington CR, Wischik CM, Riedel G (2009) Methylthioninium chloride reverses cognitive deficits induced by scopolamine:comparison with rivastigmine. Psychopharmacology 202:53. https://doi.org/10.1007/s00213-008-1394-2

    Article  CAS  PubMed  Google Scholar 

  46. Wilcock GK, Gauthier S, Frisoni GB, Jia J, Hardlund JH, Moebius HJ et al (2018) Potential of low dose leuco-methylthioninium bis (hydromethanesulphonate) (LMTM) monotherapy for treatment of mild Alzheimer’s disease: cohort analysis as modified primary outcome in a phase III clinical trial. J Alzheimers Dis 61:435–457. https://doi.org/10.3233/JAD-170560

    Article  CAS  PubMed  Google Scholar 

  47. Brunden KR, Zhang B, Carroll J, Yao Y, Potuzak JS, Hogan AML et al (2010) Epothilone D improves microtubule density, axonal integrity, and cognition in a transgenic mouse model of tauopathy. J Neurosci 30:13861–13866. https://doi.org/10.1523/JNEUROSCI.3059-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhang B, Carroll J, Trojanowski JQ, Yao Y, Iba M, Potuzak JS et al (2012) The microtubule-stabilizing agent, epothilone D, reduces axonal dysfunction, neurotoxicity, cognitive deficits, and Alzheimer-like pathology in an interventional study with aged tau transgenic mice. J Neurosci 32:3601–3611. https://doi.org/10.1523/JNEUROSCI.4922-11.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Morimoto BH, Schmechel D, Hirman J, Blackwell A, Keith J, Gold M (2013) A double-blind, placebo-controlled, ascending-dose, randomized study to evaluate the safety, tolerability and effects on cognition of AL-108 after 12 weeks of intranasal administration in subjects with mild cognitive impairment. Dement Geriatr Cogn Disord 35:325–339. https://doi.org/10.1159/000348347

    Article  CAS  PubMed  Google Scholar 

  50. Shiryaev N, Jouroukhin Y, Giladi E, Polyzoidou E, Grigoriadis NC, Rosenmann H et al (2009) NAP protects memory, increases soluble tau and reduces tau hyperphosphorylation in a tauopathy model. Neurobiol Dis 34:381–388. https://doi.org/10.1016/j.nbd.2009.02.011

    Article  CAS  PubMed  Google Scholar 

  51. Kaufman AC, Salazar SV, Haas LT, Yang J, Kostylev MA, Jeng AT et al (2015) Fyn inhibition rescues established memory and synapse loss in Alzheimer mice. Ann Neurol 77:953–971. https://doi.org/10.1002/ana.24394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Le Corre S, Klafki HW, Plesnila N, Hubinger G, Obermeier A, Sahagun H et al (2006) An inhibitor of tau hyperphosphorylation prevents severe motor impairments in tau transgenic mice. Proc Natl Acad Sci 103:9673–9678. https://doi.org/10.1073/pnas.0602913103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Piette F, Belmin J, Vincent H, Schmidt N, Pariel S, Verny M et al (2011) Masitinib as an adjunct therapy for mild-to-moderate Alzheimer’s disease: a randomised, placebo-controlled phase 2 trial. Alzheimer’s Res Ther 3:16. https://doi.org/10.1186/alzrt75

    Article  CAS  Google Scholar 

  54. Keshavarz M, Farrokhi MR, Amiri A, Hosseini M (2019) The contribution of S100B to the glioprotective effects of valproic and arundic acids. Iran J Basic Med Sci 22:557. https://doi.org/10.22038/ijbms.2019.29852.7204

    Article  PubMed  PubMed Central  Google Scholar 

  55. Long Z, Zeng Q, Wang K, Sharma A, He G (2016) Gender difference in valproic acid-induced neuroprotective effects on APP/PS1 double transgenic mice modeling Alzheimer’s disease. Acta Biochim Biophys Sin 48:930–938. https://doi.org/10.1093/abbs/gmw085

    Article  CAS  PubMed  Google Scholar 

  56. Xuan AG, Pan XB, Wei P, Ji WD, Zhang WJ, Liu JH et al (2015) Valproic acid alleviates memory deficits and attenuates amyloid-β deposition in transgenic mouse model of Alzheimer’s disease. Mol Neurobiol 51:300–312. https://doi.org/10.1007/s12035-014-8751-4

    Article  CAS  PubMed  Google Scholar 

  57. Forlenza OV, Diniz BS, Radanovic M, Santos FS, Talib LL, Gattaz WF (2011) Disease-modifying properties of long-term lithium treatment for amnestic mild cognitive impairment:randomised controlled trial. Br J Psychiatry 198:351–356. https://doi.org/10.1192/bjp.bp.110.080044

    Article  PubMed  Google Scholar 

  58. Fiorentini A, Rosi MC, Grossi C, Luccarini I, Casamenti F (2010) Lithium improves hippocampal neurogenesis, neuropathology and cognitive functions in APP mutant mice. PLoS ONE 5:e14382. https://doi.org/10.1371/journal.pone.0014382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lovestone S, Davis DR, Webster MT, Kaech S, Brion JP, Matus A et al (1999) Lithium reduces tau phosphorylation:effects in living cells and in neurons at therapeutic concentrations. Biol Psychiatry 45:995–1003. https://doi.org/10.1016/s0006-3223(98)00183-8

    Article  CAS  PubMed  Google Scholar 

  60. Takahashi M, Yasutake K, Tomizawa K (1999) Lithium inhibits neurite growth and tau protein kinase I/glycogen synthase kinase-3beta-dependent phosphorylation of juvenile tau in cultured hippocampal neurons. J Neurochem 73:2073

    CAS  PubMed  Google Scholar 

  61. Leroy K, Ando K, Heraud C, Yilmaz Z, Authelet M, Boeynaems JM et al (2010) Lithium treatment arrests the development of neurofibrillary tangles in mutant tau transgenic mice with advanced neurofibrillary pathology. J Alzheimers Dis 19:705–719. https://doi.org/10.3233/JAD-2010-1276

    Article  CAS  PubMed  Google Scholar 

  62. Zhang H, Liu Y, Lao M, Ma Z, Yi X (2011) Puerarin protects Alzheimer’s disease neuronal cybrids from oxidant-stress induced apoptosis by inhibiting pro-death signaling pathways. Exp Gerontol 46:30–37. https://doi.org/10.1016/j.exger.2010.09.013

    Article  CAS  PubMed  Google Scholar 

  63. Leyhe T, Eschweiler GW, Stransky E, Gasser T, Annas P, Basun H et al (2009) Increase of BDNF serum concentration in lithium treated patients with early Alzheimer’s disease. J Alzheimers Dis 16:649–656. https://doi.org/10.3233/JAD-2009-1004

    Article  CAS  PubMed  Google Scholar 

  64. Hooper C, Killick R, Lovestone S (2008) The GSK3 hypothesis of Alzheimer’s disease. J Neurochem 104:1433–1439. https://doi.org/10.1111/j.1471-4159.2007.05194.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Phiel CJ, Wilson CA, Lee VM, Klein PS (2003) GSK-3alpha regulates production of Alzheimer’s disease amyloid-beta peptides. Nature 423:435–439. https://doi.org/10.1038/nature01640

    Article  CAS  PubMed  Google Scholar 

  66. Avila J, Hernandez F (2007) GSK-3 inhibitors for Alzheimer’s disease. Expert Rev Neurother 7:1527–1533. https://doi.org/10.1586/14737175.7.11.1527

    Article  CAS  PubMed  Google Scholar 

  67. Cacquevel M, Lebeurrier N, Cheenne S, Vivien D (2004) Cytokines in neuroinflammation and Alzheimer’s disease. Curr Drug Targets 5:529–534. https://doi.org/10.2174/1389450043345308

    Article  CAS  PubMed  Google Scholar 

  68. Heneka MT, Carson MJ, El Khoury J, Landreth GE, Brosseron F, Feinstein DL et al (2015) Neuroinflammation in Alzheimer’s disease. Lancet Neurol 14:388–405. https://doi.org/10.1016/S1474-4422(15)70016-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Yuan SM, Gao K, Wang DM, Quan XZ, Liu JN, Ma CM et al (2011) Evodiamine improves congnitive abilities in SAMP8 and APP swe/PS1 ΔE9 transgenic mouse models of Alzheimer’s disease. Acta Pharmacol Sin 32:295–302. https://doi.org/10.1038/aps.2010.230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Li J, Wang G, Liu J, Zhou L, Dong M, Wang R et al (2010) Puerarin attenuates amyloid-beta-induced cognitive impairment through suppression of apoptosis in rat hippocampus in vivo. Eur J Pharmacol 649:195–201. https://doi.org/10.1016/j.ejphar.2010.09.045

    Article  CAS  PubMed  Google Scholar 

  71. Jia SL, Wu XL, Li XX, Dai XL, Gao ZL, Lu Z et al (2016) Neuroprotective effects of liquiritin on cognitive deficits induced by soluble amyloid-β1–42 oligomers injected into the hippocampus. J Asian Nat Prod Res 18:1186–1199. https://doi.org/10.1080/10286020.2016.1201811

    Article  CAS  PubMed  Google Scholar 

  72. Mao J, Huang S, Liu S, Feng XL, Yu M, Liu J et al (2015) A herbal medicine for Alzheimer’s disease and its active constituents promote neural progenitor proliferation. Aging Cell 14:784–796. https://doi.org/10.1111/acel.12356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Chen BH, Park JH, Cho JH, Kim IH, Lee JC, Lee TK et al (2016) Tanshinone I enhances neurogenesis in the mouse hippocampal dentate gyrus via increasing Wnt-3, phosphorylated glycogen synthase kinase-3β and β-catenin immunoreactivities. Neurochem Res 41:1958–1968. https://doi.org/10.1007/s11064-016-1906-0

    Article  CAS  PubMed  Google Scholar 

  74. Guo G, Li B, Wang Y, Shan A, Shen W, Yuan L et al (2010) Effects of salvianolic acid B on proliferation, neurite outgrowth and differentiation of neural stem cells derived from the cerebral cortex of embryonic mice. Sci China Life Sci 53:653–662. https://doi.org/10.1007/s11427-010-3106-5

    Article  CAS  PubMed  Google Scholar 

  75. Zhuang P, Zhang Y, Cui G, Bian Y, Zhang M, Zhang J et al (2012) Direct stimulation of adult neural stem/progenitor cells in vitro and neurogenesis in vivo by salvianolic acid B. PLoS ONE 7:e35636. https://doi.org/10.1371/journal.pone.0035636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Zhu J, Mu X, Zeng J, Xu C, Liu J, Zhang M et al (2014) Ginsenoside Rg1 prevents cognitive impairment and hippocampus senescence in a rat model of D-galactose-induced aging. PLoS ONE 9:e101291. https://doi.org/10.1371/journal.pone.0101291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Tohda C, Tamura T, Matsuyama S, Komatsu K (2006) Promotion of axonal maturation and prevention of memory loss in mice by extracts of Astragalus mongholicus. Br J Pharmacol 149:532–541. https://doi.org/10.1038/sj.bjp.0706865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Wang Z, Liu Q, Zhang R, Liu S, Xia Z, Hu Y (2009) Catalpol ameliorates beta amyloid–induced degeneration of cholinergic neurons by elevating brain-derived neurotrophic factors. Neuroscience 163:1363–1372. https://doi.org/10.1016/j.neuroscience.2009.07.041

    Article  CAS  PubMed  Google Scholar 

  79. Li F, Dong H, Gong Q, Wu Q, Jin F, Shi J (2015) Icariin decreases both APP and Aβ levels and increases neurogenesis in the brain of Tg2576 mice. Neuroscience 304:29–35. https://doi.org/10.1016/j.neuroscience.2015.06.010

    Article  CAS  PubMed  Google Scholar 

  80. Zhang L, Shen C, Chu J, Zhang R, Li Y, Li L (2014) Icariin decreases the expression of APP and BACE-1 and reduces the β-amyloid burden in an APP Transgenic mouse model of Alzheimer’s disease. Int J Biol Sci 10:181. https://doi.org/10.7150/ijbs.6232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Sheng C, Xu P, Zhou K, Deng D, Zhang C, Wang Z (2017) Icariin attenuates synaptic and cognitive deficits in an Aβ1–42-induced rat model of Alzheimer’s disease. BioMed Res Int. https://doi.org/10.1155/2017/7464872

    Article  PubMed  PubMed Central  Google Scholar 

  82. Tchantchou F, Xu Y, Wu Y, Christen Y, Luo Y (2007) EGb 761 enhances adult hippocampal neurogenesis and phosphorylation of CREB in transgenic mouse model of Alzheimer’s disease. FASEB J 21:2400–2408. https://doi.org/10.1096/fj.06-7649com

    Article  CAS  PubMed  Google Scholar 

  83. Tchantchou F, Lacor PN, Cao Z, Lao L, Hou Y, Cui C et al (2009) Stimulation of neurogenesis and synaptogenesis by bilobalide and quercetin via common final pathway in hippocampal neurons. J Alzheimers Dis 18:787–798. https://doi.org/10.3233/JAD-2009-1189

    Article  CAS  PubMed  Google Scholar 

  84. Mook-Jung I, Hong HS, Boo JH, Lee KH, Yun SH, Cheong MY et al (2001) Ginsenoside Rb1 and Rg1 improve spatial learning and increase hippocampal synaptophysin level in mice. J Neurosci Res 63:509–515. https://doi.org/10.1002/jnr.1045

    Article  CAS  PubMed  Google Scholar 

  85. Tiwari SK, Agarwal S, Seth B, Yadav A, Nair S, Bhatnagar P et al (2014) Curcumin-loaded nanoparticles potently induce adult neurogenesis and reverse cognitive deficits in Alzheimer’s disease model via canonical Wnt/β-catenin pathway. ACS Nano 8:76–103. https://doi.org/10.1021/nn405077y

    Article  CAS  PubMed  Google Scholar 

  86. Liu J, Wang LN, Wu LY, Wang YP (2016) Treatment of epilepsy for people with Alzheimer’s disease. Cochrane Database Syst Rev 11(11):CD011922. https://doi.org/10.1002/14651858.CD011922.pub2

    Article  PubMed  Google Scholar 

  87. Kim SJ, Son TG, Park HR, Park M, Kim MS, Kim HS et al (2008) Curcumin stimulates proliferation of embryonic neural progenitor cells and neurogenesis in the adult hippocampus. J Biol Chem 283:14497–14505. https://doi.org/10.1074/jbc.M708373200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. He Y, Wang P, Wei P, Feng H, Ren Y, Yang J et al (2016) Effects of curcumin on synapses in APPswe/PS1dE9 mice. Int J Immunopathol Pharmacol 29:217–225. https://doi.org/10.1177/0394632016638099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Feng HL, Dang HZ, Fan H, Chen XP, Rao YX, Ren Y et al (2016) Curcumin ameliorates insulin signalling pathway in brain of Alzheimer’s disease transgenic mice. Int J Immunopathol Pharmacol 29:734–741. https://doi.org/10.1177/0394632016659494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Wang P, Su C, Li R, Wang H, Ren Y, Sun H et al (2014) Mechanisms and effects of curcumin on spatial learning and memory improvement in APPswe/PS1dE9 mice. J Neurosci Res 92:218–231. https://doi.org/10.1002/jnr.23322

    Article  CAS  PubMed  Google Scholar 

  91. Zhang L, Fang Y, Xu Y, Lian Y, Xie N, Wu T et al (2015) Curcumin improves amyloid β-peptide (1–42) induced spatial memory deficits through BDNF-ERK signaling pathway. PLoS ONE 10:e0131525. https://doi.org/10.1371/journal.pone.0131525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Cui YM, Ao MZ, Li W, Yu LJ (2008) Effect of glabridin from Glycyrrhiza glabra on learning and memory in mice. Planta Med 74:377–380. https://doi.org/10.1055/s-2008-1034319

    Article  CAS  PubMed  Google Scholar 

  93. Zhang SQ, Obregon D, Ehrhart J, Deng J, Tian J, Hou H et al (2013) Baicalein reduces β-amyloid and promotes nonamyloidogenic amyloid precursor protein processing in an Alzheimer’s disease transgenic mouse model. J Neurosci Res 91:1239–1246. https://doi.org/10.1002/jnr.23244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Li H, Kang T, Qi B, Kong L, Jiao Y, Cao Y et al (2016) Neuroprotective effects of ginseng protein on PI3K/Akt signaling pathway in the hippocampus of D-galactose/AlCl3 inducing rats model of Alzheimer’s disease. J Ethnopharmacol 179:162–169. https://doi.org/10.1016/j.jep.2015.12.020

    Article  CAS  PubMed  Google Scholar 

  95. Yan L, Deng Y, Gao J, Liu Y, Li F, Shi J et al (2017) Icariside II effectively reduces spatial learning and memory impairments in Alzheimer’s disease model mice targeting beta-amyloid production. Front Pharmacol 8:106. https://doi.org/10.3389/fphar.2017.00106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Li X, Cui J, Yu Y, Li W, Hou Y, Wang X et al (2016) Traditional chinese nootropic medicine radix polygalae and its active constituent onjisaponin B reduce β-amyloid production and improve cognitive impairments. PLoS ONE 11:e0151147. https://doi.org/10.1371/journal.pone.0151147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Singh JCH, Kakalij RM, Kshirsagar RP, Kumar BH, Komakula SSB, Diwan PV (2015) Cognitive effects of vanillic acid against streptozotocin-induced neurodegeneration in mice. Pharm Biol 53:630–636. https://doi.org/10.3109/13880209.2014.935866

    Article  CAS  PubMed  Google Scholar 

  98. Jesky R, Chen H (2015) The neuritogenic and neuroprotective potential of senegenin against Aβ-induced neurotoxicity in PC 12 cells. BMC Compl Alternative Med 16:1–11. https://doi.org/10.1186/s12906-016-1006-3

    Article  CAS  Google Scholar 

  99. Park CH, Choi SH, Koo JW, Seo JH, Kim HS, Jeong SJ et al (2002) Novel cognitive improving and neuroprotective activities of Polygala tenuifolia Willdenow extract, BT-11. J Neurosci Res 70:484–492. https://doi.org/10.1002/jnr.10429

    Article  CAS  PubMed  Google Scholar 

  100. Van Praag H, Lucero MJ, Yeo GW, Stecker K, Heivand N, Zhao C et al (2007) Plant-derived flavanol (−) epicatechin enhances angiogenesis and retention of spatial memory in mice. J Neurosci 27:5869–5878. https://doi.org/10.1523/JNEUROSCI.0914-07.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

Researching data for article: MHR, SNS, HV and KZ. Substantial contribution to discussion of content: MHR, SNS, HV, KZ, FF and VF. Writing: MHR, SNS. Review/Editing of manuscript before submission: MHR, SNS, HV, KZ, FF and VF.

Corresponding author

Correspondence to Sajad Sahab Negah.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moradi, H.R., Hajali, V., Khaksar, Z. et al. The next step of neurogenesis in the context of Alzheimer’s disease. Mol Biol Rep 48, 5647–5660 (2021). https://doi.org/10.1007/s11033-021-06520-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06520-9

Keywords

Navigation