Skip to main content

Advertisement

Log in

Effects of GSTT1 and GSTM1 polymorphisms in glutathione levels and breast cancer development in Brazilian patients

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Polymorphisms in the glutathione transferase enzymes (GSTs) genes have been associated with susceptibility to develop breast cancer (BC), but few are known regarding its role on this disease prognosis and impact on antioxidant status. This study evaluated the polymorphisms of GSTM1 and GSTT1 genes and their relationship with BC susceptibility and prognostic, as well as its impact on plasma reduced glutathione (GSH) levels. The present study included 121 women with invasive ductal BC and 151 healthy controls. Polymorphisms analyses were performed using the polymerase chain reaction (PCR) technique and GSH levels were measured with the Ellman’s reagent. GSTT1 (OR 1.29; p = 0.39) and GSTM1 (OR 1.03; p = 0.91) polymorphisms did not show any association with BC susceptibility. The mean concentration values in nmol/L of GSH were 20.37 ± 5.82 for patients with null genotypes for both genes, 19.75 ± 3.47 for null GSTT1, 17.22 ± 1.35 for active GSTT1, 18.82 ± 1.96 for absent GSTM1, and 16.59 ± 1.66 for active GSTM1, but no significance was found. Therefore, it can be concluded that the behavior of these polymorphisms concerning BC might be not only related to the absence of enzymatic expression but may also be related to the body’s response with its antioxidant mechanisms and it should be further studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68(6):394–424. https://doi.org/10.3322/caac.21492

    Article  Google Scholar 

  2. Yerushalmi R, Woods R, Ravdin PM, Hayes MM, Gelmon KA (2010) Ki67 in breast cancer: prognostic and predictive potential. Lancet Oncol 11(2):174–183. https://doi.org/10.1016/S1470-2045(09)70262-1

    Article  CAS  PubMed  Google Scholar 

  3. Ahmed K, Jahan P, Nadia I, Ahmed F, Abdullah Al E (2016) Assessment of menopausal symptoms among early and late menopausal midlife bangladeshi women and their impact on the quality of life. J Menopausal Med 22(1):39–46. https://doi.org/10.6118/jmm.2016.22.1.39

    Article  PubMed  PubMed Central  Google Scholar 

  4. Catsburg C, Miller AB, Rohan TE (2015) Active cigarette smoking and risk of breast cancer. Int J Cancer 136(9):2204–2209. https://doi.org/10.1002/ijc.29266

    Article  CAS  PubMed  Google Scholar 

  5. Sebastiani F, Cortesi L, Sant M, Lucarini V, Cirilli C, De Matteis E, Marchi I, Negri R, Gallo E, Federico M (2016) Increased incidence of breast cancer in postmenopausal women with high body mass index at the modena screening program. J Breast Cancer 19(3):283–291. https://doi.org/10.4048/jbc.2016.19.3.283

    Article  PubMed  PubMed Central  Google Scholar 

  6. Klaunig JE, Kamendulis LM (2004) The role of oxidative stress in carcinogenesis. Annu Rev Pharmacol Toxicol 44:239–267. https://doi.org/10.1146/annurev.pharmtox.44.101802.121851

    Article  CAS  PubMed  Google Scholar 

  7. Tamási V, Monostory K, Prough RA, Falus A (2011) Role of xenobiotic metabolism in cancer: involvement of transcriptional and miRNA regulation of P450s. Cell Mol Life Sci 68(7):1131–1146. https://doi.org/10.1007/s00018-010-0600-7

    Article  CAS  PubMed  Google Scholar 

  8. McFadyen MC, Melvin WT, Murray GI (2004) Cytochrome P450 enzymes: novel options for cancer therapeutics. Mol Cancer Ther 3(3):363–371

    CAS  PubMed  Google Scholar 

  9. Hayes JD, Flanagan JU, Jowsey IR (2005) Glutathione transferases. Annu Rev Pharmacol Toxicol 45:51–88. https://doi.org/10.1146/annurev.pharmtox.45.120403.095857

    Article  CAS  PubMed  Google Scholar 

  10. Windmill KF, Gaedigk A, de la Hall PM, Samaratunga H, Grant DM, McManus ME (2000) Localization of N-acetyltransferases NAT1 and NAT2 in human tissues. Toxicol Sci 54(1):19–29. https://doi.org/10.1093/toxsci/54.1.19

    Article  CAS  PubMed  Google Scholar 

  11. Kaplowitz N, Aw TY, Ookhtens M (1985) The regulation of hepatic glutathione. Annu Rev Pharmacol Toxicol 25(1):715–744. https://doi.org/10.1146/annurev.pa.25.040185.003435

    Article  CAS  PubMed  Google Scholar 

  12. Oakley A (2011) Glutathione transferases: a structural perspective. Drug Metab Rev 43(2):138–151. https://doi.org/10.3109/03602532.2011.558093

    Article  CAS  PubMed  Google Scholar 

  13. Wu G, Fang Y-Z, Yang S, Lupton JR, Turner ND (2004) Glutathione metabolism and its implications for health. J Nutr 134(3):489–492. https://doi.org/10.1093/jn/134.3.489

    Article  CAS  Google Scholar 

  14. Widersten M, Pearson WR, Engström A, Mannervik B (1991) Heterologous expression of the allelic variant mu-class glutathione transferases mu and psi. Biochem J 276(Pt 2):519–524

    Article  CAS  Google Scholar 

  15. Arruda VR, Grinolli CE, Gonçalves MS, Soares MC, Menezes R, Saad ST, Costa FF (1998) Prevalence of homozygozity for the deleted alleles of glutathione S-transferase mu (GSTM1) and theta (GSTT1) among distinct ethnic groups from Brazil: Relevance to environmental carcinogenesis? Clin Genet 54:210–214

    CAS  PubMed  Google Scholar 

  16. Di Pietro G, Magno LA, Rios-Santos F (2010) Glutathione S-transferases: an overview in cancer research. Expert Opin Drug Metab Toxicol 6(2):153–170. https://doi.org/10.1517/17425250903427980

    Article  CAS  PubMed  Google Scholar 

  17. Townsend DM, Tew KD (2003) The role of glutathione-S-transferase in anti-cancer drug resistance. Oncogene 22(47):7369–7375. https://doi.org/10.1038/sj.onc.1206940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mostafavi SS, Ebrahimi A, Sadat SM, Davari Tanha F, Aghasadeghi MR, Bahramali G, Abbasi Ranjbar P, Sadeghifard V, Javadi F (2016) Impact of null genotypes of GSTT1 and GSTM1 with uterine leiomyoma risk in Iranian population. J Obstet Gynaecol Res 42(4):434–439. https://doi.org/10.1111/jog.12924

    Article  CAS  PubMed  Google Scholar 

  19. Eslami S, Sahebkar A (2014) Glutathione-S-transferase M1 and T1 null genotypes are associated with hypertension risk: a systematic review and meta-analysis of 12 studies. Curr Hypertens Rep 16(6):432. https://doi.org/10.1007/s11906-014-0432-1

    Article  CAS  PubMed  Google Scholar 

  20. Hruska P, Rybecka S, Novak J, Zlamal F, Splichal Z, Slaby O, Vasku V, Bienertova-Vasku J (2017) Combinations of common polymorphisms within GSTA1 and GSTT1 as a risk factor for psoriasis in a central European population: a case-control study. J Eur Acad Dermatol Venereol 31(10):e461–e463. https://doi.org/10.1111/jdv.14266

    Article  CAS  PubMed  Google Scholar 

  21. Malik SS, Kazmi Z, Fatima I, Shabbir R, Perveen S, Masood N (2016) Genetic polymorphism of GSTM1 and GSTT1 and risk of prostatic carcinoma—a meta-analysis of 7,281 prostate cancer cases and 9,082 healthy controls. Asian Pac J Cancer Prev 17(5):2629–2635

    PubMed  Google Scholar 

  22. Possuelo LG, Peraça CF, Eisenhardt MF, Dotto ML, Cappelletti L, Foletto E, Valim ARDM (2013) Polymorphisms of GSTM1 and GSTT1 genes in breast cancer susceptibility: a case-control study. Rev Bras Ginecol Obstet 35:569–574

    Article  Google Scholar 

  23. Wang J, Wang T, Yin GY, Yang L, Wang ZG, Bu XB (2015) Glutathione S-transferase polymorphisms influence chemotherapy response and treatment outcome in breast cancer. Genet Mol Res 14(3):11126–11132. https://doi.org/10.4238/2015.September.22.6

    Article  CAS  PubMed  Google Scholar 

  24. Cormanique TF, Almeida LE, Rech CA, Rech D, Herrera AC, Panis C (2015) Chronic psychological stress and its impact on the development of aggressive breast cancer. Einstein (São Paulo) 13:352–356

    Article  Google Scholar 

  25. Miller SA, Dykes DD, Polesky HF (1988) A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 16(3):1215–1215. https://doi.org/10.1093/nar/16.3.1215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Abdel-Rahman SZ, el-Zein RA, Anwar WA, Au WW (1996) A multiplex PCR procedure for polymorphic analysis of GSTM1 and GSTT1 genes in population studies. Cancer Lett 107(2):229–233. https://doi.org/10.1016/0304-3835(96)04832-x

    Article  CAS  PubMed  Google Scholar 

  27. Sedlak J, Lindsay RH (1968) Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal Biochem 25(1):192–205. https://doi.org/10.1016/0003-2697(68)90092-4

    Article  CAS  PubMed  Google Scholar 

  28. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70. https://doi.org/10.1016/s0092-8674(00)81683-9

    Article  CAS  PubMed  Google Scholar 

  29. Sapcharoen K, Sanguansermsri P, Yasothornsrikul S, Muisuk K, Srikummool M (2019) Gene combination of CD44 rs187116, CD133 rs2240688, NF-kappaB1 rs28362491 and GSTM1 deletion as a potential biomarker in risk prediction of breast cancer in lower Northern Thailand. Asian Pac J Cancer Prev 20(8):2493–2502. https://doi.org/10.31557/apjcp.2019.20.8.2493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pacholak LM, Amarante MK, Guembarovski RL, Watanabe MAE, Panis C (2020) Polymorphisms in GSTT1 and GSTM1 genes as possible risk factors for susceptibility to breast cancer development and their influence in chemotherapy response: a systematic review. Mol Biol Rep. https://doi.org/10.1007/s11033-020-05555-8

  31. Sui C, Ma J, He X, Wang G, Ai F (2014) Interactive effect of glutathione S-transferase M1 and T1 polymorphisms on hepatocellular carcinoma. Tumour Biol 35(8):8235–8241. https://doi.org/10.1007/s13277-014-2071-1

    Article  CAS  PubMed  Google Scholar 

  32. Kalacas NA, Garcia JA, Sy Ortin T, Valdez A Jr, Fellizar A, Ramos MC, Albano PM (2019) GSTM1 and GSTT1 genetic polymorphisms and breast cancer risk in selected Filipino cases. Asian Pac J Cancer Prev 20(2):529–535. https://doi.org/10.31557/apjcp.2019.20.2.529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Almeida M, Soares M, Ramalhinho AC, Moutinho JF, Breitenfeld L (2019) Prognosis of hormone-dependent breast cancer seems to be influenced by KEAP1, NRF2 and GSTM1 genetic polymorphisms. Mol Biol Rep 46(3):3213–3224. https://doi.org/10.1007/s11033-019-04778-8

    Article  CAS  PubMed  Google Scholar 

  34. Al-Eitan LN, Rababa’h DM, Alghamdi MA, Khasawneh RH (2019) Association Of GSTM1, GSTT1 And GSTP1 polymorphisms with breast cancer among jordanian women. Onco Targets Ther 12:7757–7765. https://doi.org/10.2147/ott.s207255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Li S, Lang GT, Zhang YZ, Yu KD, Shao ZM, Zhang Q (2018) Interaction between glutathione S-transferase M1-null/present polymorphism and adjuvant chemotherapy influences the survival of breast cancer. Cancer Med 7(9):4202–4207. https://doi.org/10.1002/cam4.1567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Campos CZ, Losi Guembarovski R, de Oliveira CEC, Banin Hirata BK, Vitiello GAF, Dias FL, Hiroki CH, Watanabe MAE, Mazzuco TL (2017) Glutathione S-transferases deletions may act as prognosis and therapeutic markers in breast cancer. Clin Exp Med 18(1):27–35. https://doi.org/10.1007/s10238-017-0461-6

    Article  CAS  PubMed  Google Scholar 

  37. Nathan C, Cunningham-Bussel A (2013) Beyond oxidative stress: an immunologist’s guide to reactive oxygen species. Nat Rev Immunol 13(5):349–361. https://doi.org/10.1038/nri3423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Dröge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82(1):47–95. https://doi.org/10.1152/physrev.00018.2001

    Article  PubMed  Google Scholar 

  39. Griess B, Tom E, Domann F, Teoh-Fitzgerald M (2017) Extracellular superoxide dismutase and its role in cancer. Free Radic Biol Med 112:464–479. https://doi.org/10.1016/j.freeradbiomed.2017.08.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Brigelius-Flohé R, Flohé L (2019) Regulatory phenomena in the glutathione peroxidase superfamily. Antioxid Redox Signal. https://doi.org/10.1089/ars.2019.7905

  41. Chance B, Sies H, Boveris A (1979) Hydroperoxide metabolism in mammalian organs. Physiol Rev 59(3):527–605. https://doi.org/10.1152/physrev.1979.59.3.527

    Article  CAS  Google Scholar 

  42. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39(1):44–84. https://doi.org/10.1016/j.biocel.2006.07.001

    Article  CAS  Google Scholar 

  43. Dirr H, Reinemer P, Huber R (1994) Refined crystal structure of porcine class Pi glutathione S-transferase (pGST P1-1) at 2.1 Å resolution. J Mol Biol 243(1):72–92. https://doi.org/10.1006/jmbi.1994.1631

    Article  CAS  PubMed  Google Scholar 

  44. Panis C, Victorino VJ, Herrera AC, Freitas LF, De Rossi T, Campos FC, Simao AN, Barbosa DS, Pinge-Filho P, Cecchini R, Cecchini AL (2012) Differential oxidative status and immune characterization of the early and advanced stages of human breast cancer. Breast Cancer Res Treat 133(3):881–888. https://doi.org/10.1007/s10549-011-1851-1

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful for all Lab and Hospital personnel, funding agencies, and patients.

Funding

Fundação Araucária, Programa de Pesquisa Para o SUS—PPSUS, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carolina Panis.

Ethics declarations

Conflict of interest

The authors have no conflicts to declare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary electronic material(s)

Tables S1–S6

(DOCX 36 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pacholak, L.M., Kern, R., de Oliveira, S.T. et al. Effects of GSTT1 and GSTM1 polymorphisms in glutathione levels and breast cancer development in Brazilian patients. Mol Biol Rep 48, 33–40 (2021). https://doi.org/10.1007/s11033-020-06107-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-06107-w

Keywords

Navigation