Skip to main content

Advertisement

Log in

Genetic alterations and clinical dimensions of oral cancer: a review

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Oral cancer ranks sixth most prevalent type of cancer worldwide due to its alarming increase every year. Progression of oral cancer depends on various heterogeneity pathways, but their exact mechanism remains unclear. Genetic aberrations on oral cancer cells set back the effectiveness of existing therapies and make it more challenging by triggering drug resistance. To understand the intricate details of oral cancer pathogenesis and for advancing current therapies, genetic modifications are the most promising approach. In this review, we tabulated the information on genetic alterations, microbial associations, aberrant signalling pathways and their clinicopathological characters on the pathogenesis of oral cancer. We primarily discussed the pitfalls of the current treatment regimen and its associated drug resistance pattern, which will provide a clear insight into developing new drugs. We also highlighted the genetic-molecular targets with their current clinical status on drug development and its outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Alfouzan AF (2019) Head and neck cancer pathology: old world versus new world disease. Niger J Clin Pract 22:1–8. https://doi.org/10.4103/njcp.njcp_310_18

    Article  CAS  PubMed  Google Scholar 

  2. Kumar M, Nanavati R, Modi T, Dobariya C (2016) Oral cancer: etiology and risk factors: a review. J Cancer Res Ther 12:458–463. https://doi.org/10.4103/0973-1482.186696

    Article  CAS  PubMed  Google Scholar 

  3. Jurel SK, Gupta DS, Singh RD et al (2014) Genes and oral cancer. Indian J Hum Genet 20:4–9. https://doi.org/10.4103/0971-6866.132745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jiang X, Wu J, Wang J, Huang R (2019) Tobacco and oral squamous cell carcinoma: a review of carcinogenic pathways. Tob Induc Dis 17:1–9

    Google Scholar 

  5. Xue J, Yang S, Seng S (2014) Mechanisms of cancer induction by tobacco-specific NNK and NNN. Cancers 6:1138–1156. https://doi.org/10.3390/cancers6021138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dong TT, Wang LJ, Liu LZ, Ma SN (2016) Susceptibility to oral squamous cell carcinoma: correlation with variants of CYP1A1-MspI, GSTT1, GSTM1, ALDH2, EC-SOD and lifestyle factors. Balk J Med Genet 19:61–70. https://doi.org/10.1515/bjmg-2016-0037

    Article  CAS  Google Scholar 

  7. D’Souza W, Saranath D (2015) Clinical implications of epigenetic regulation in oral cancer. Oral Oncol 51:1061–1068. https://doi.org/10.1016/j.oraloncology.2015.09.006

    Article  CAS  PubMed  Google Scholar 

  8. Mello FW, Melo G, Guerra EN, Da S et al (2020) Prognostic biomarkers for malignant transformation of oral potentially malignant disorders: a scoping review protocol. JBI Evid Synth 18:1349–1357

    Article  Google Scholar 

  9. Morse DE, Psoter WJ, Cleveland D et al (2007) Smoking and drinking in relation to oral cancer and oral epithelial dysplasia. Cancer Causes Control 18:919–929. https://doi.org/10.1007/s10552-007-9026-4

    Article  PubMed  PubMed Central  Google Scholar 

  10. Mekala MR, Bangi BB, Jayalatha N et al (2020) Association of diabetes with oral cancer—an enigmatic correlation. Asian Pac J Cancer Prev 21:809–814. https://doi.org/10.31557/APJCP.2020.21.3.809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gao L, Xu T, Huang G et al (2018) Oral microbiomes: more and more importance in oral cavity and whole body. Protein Cell 9:488–500. https://doi.org/10.1007/s13238-018-0548-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Al-Hebshi NN, Borgnakke WS, Johnson NW (2019) The microbiome of oral squamous cell carcinomas: a functional perspective. Curr Oral Heal Rep 6:145–160. https://doi.org/10.1007/s40496-019-0215-5

    Article  Google Scholar 

  13. Yilmaz Ö, Jungas T, Verbeke P, Ojcius DM (2004) Activation of the phosphatidylinositol 3-kinase/Akt pathway contributes to survival of primary epithelial cells infected with the periodontal pathogen Porphyromonas gingivalis. Infect Immun 72:3743–3751. https://doi.org/10.1128/IAI.72.7.3743-3751.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Engku Nasrullah Satiman EAF, Ahmad H, Ramzi AB et al (2020) The role of Candida albicans candidalysin ECE1 gene in oral carcinogenesis. J Oral Pathol Med. https://doi.org/10.1111/jop.13014

    Article  PubMed  Google Scholar 

  15. Kim SM, Kim SM (2016) Human papilloma virus in oral cancer. J Korean Assoc oral Maxillofac Surg 42:327–336

    Article  Google Scholar 

  16. Vargas-Ferreira F, Nedel F, Etges A et al (2012) Etiologic factors associated with oral squamous cell carcinoma in non-smokers and non-alcoholic drinkers: a brief approach. Braz Dent J 23:586–590. https://doi.org/10.1590/S0103-64402012000500020

    Article  PubMed  Google Scholar 

  17. Metgud R, Astekar M, Verma M, Sharma A (2012) Role of viruses in oral squamous cell carcinoma. Oncol Rev 6:164–170. https://doi.org/10.4081/oncol.2012.e21

    Article  Google Scholar 

  18. Furquim CP, Pivovar A, Amenábar JM et al (2018) Oral cancer in Fanconi anemia: review of 121 cases. Crit Rev Oncol Hematol 125:35–40. https://doi.org/10.1016/j.critrevonc.2018.02.013

    Article  PubMed  Google Scholar 

  19. Huang Y, Zhao J, Mao G et al (2019) Identification of novel genetic variants predisposing to familial oral squamous cell carcinomas. Cell Discov 5:1–9. https://doi.org/10.1038/s41421-019-0126-6

    Article  CAS  Google Scholar 

  20. Chen C, Zhang Y, Loomis MM et al (2015) Genome-wide loss of heterozygosity and DNA copy number aberration in HPV-negative oral squamous cell carcinoma and their associations with disease-specific survival. PLoS ONE 10:1–23. https://doi.org/10.1371/journal.pone.0135074

    Article  CAS  Google Scholar 

  21. Bau D, Chang C, Tsai M, Chiu C (2010) Association between DNA repair gene ATM polymorphisms and oral cancer susceptibility. Laryngoscope 120:2417–2422. https://doi.org/10.1002/lary.21009

    Article  CAS  PubMed  Google Scholar 

  22. Hou J, Gu Y, Hou W et al (2015) P53 codon 72 polymorphism, human papillomavirus infection, and their interaction to oral carcinoma susceptibility. BMC Genet 16:1–9. https://doi.org/10.1186/s12863-015-0235-7

    Article  CAS  Google Scholar 

  23. Ghanghoria S, Ghanghoria A, Shukla A (2015) p53 expression in oral cancer: a study of 50 cases. J Pathol Nepal 5:747–751. https://doi.org/10.3126/jpn.v5i9.13785

    Article  Google Scholar 

  24. Zanaruddin SNS, Yee PS, Hor SY et al (2013) Common oncogenic mutations are infrequent in oral squamous cell carcinoma of Asian origin. PLoS ONE. https://doi.org/10.1371/journal.pone.0080229

    Article  PubMed  PubMed Central  Google Scholar 

  25. Sinha A, Chandra S, Raj V et al (2015) Expression of p63 in potentially malignant and malignant oral lesions. J Oral Biol Craniofacial Res 5:165–172. https://doi.org/10.1016/j.jobcr.2015.07.001

    Article  Google Scholar 

  26. Thomas S, Balan A, Balaram P (2015) The expression of retinoblastoma tumor suppressor protein in oral cancers and precancers: a clinicopathological study. Dent Res J 12:307–314. https://doi.org/10.4103/1735-3327.161427

    Article  Google Scholar 

  27. Porcheri C, Meisel CT, Mitsiadis T (2019) Multifactorial contribution of notch signaling in head and neck squamous cell carcinoma. Int J Mol Sci 20:1520. https://doi.org/10.3390/ijms20071520

    Article  CAS  PubMed Central  Google Scholar 

  28. Fukusumi T, Califano JA (2018) The NOTCH pathway in head and neck squamous cell carcinoma. J Dent Res 97:645–653. https://doi.org/10.1177/0022034518760297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tsui IFL, Rosin MP, Zhang L et al (2008) Multiple aberrations of chromosome 3p detected in oral premalignant lesions multiple aberrations of chromosome 3p detected in oral premalignant lesions. Cancer Prev Res 1:424–429. https://doi.org/10.1158/1940-6207.CAPR-08-0123

    Article  CAS  Google Scholar 

  30. Ferreira DM, Neves TJ, Lima LGCA et al (2017) Prognostic implications of the phosphatidylinositol 3-kinase/Akt signaling pathway in oral squamous cell carcinoma: overexpression of p-mTOR indicates an adverse prognosis. Appl Cancer Res 37:41. https://doi.org/10.1186/s41241-017-0046-4

    Article  Google Scholar 

  31. Zhang S, Zhou X, Wang B et al (2014) Loss of VHL expression contributes to epithelial–mesenchymal transition in oral squamous cell carcinoma. Oral Oncol 50:809–817. https://doi.org/10.1016/j.oraloncology.2014.06.007

    Article  CAS  PubMed  Google Scholar 

  32. Liu M, Song H, Xing Z et al (2019) Correlation between PTEN gene polymorphism and oral squamous cell carcinoma. Oncol Lett 18:1755–1760. https://doi.org/10.3892/ol.2019.10526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chaves FN, Bezerra TMM, Moraes DC et al (2020) Loss of heterozygosity and immunoexpression of PTEN in oral epithelial dysplasia and squamous cell carcinoma. Exp Mol Pathol 112:104341. https://doi.org/10.1016/j.yexmp.2019.104341

    Article  CAS  PubMed  Google Scholar 

  34. Yang MH, Lin BR, Chang CH et al (2012) Connective tissue growth factor modulates oral squamous cell carcinoma invasion by activating a miR-504/FOXP1 signalling. Oncogene 31:2401–2411. https://doi.org/10.1038/onc.2011.423

    Article  CAS  PubMed  Google Scholar 

  35. Pérez-Sayáns M, Suárez-Peñaranda JM, Herranz-Carnero M et al (2012) The role of the adenomatous polyposis coli (APC) in oral squamous cell carcinoma. Oral Oncol 48:56–60. https://doi.org/10.1016/j.oraloncology.2011.09.001

    Article  CAS  PubMed  Google Scholar 

  36. Lindemann A, Takahashi H, Patel AA et al (2018) Targeting the DNA damage response in OSCC with TP53 mutations. J Dent Res 97:635–644. https://doi.org/10.1177/0022034518759068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chien M, Chou LS, Chung T et al (2012) Effects of E-CADHERIN (CDH1) gene promoter polymorphism on the risk and linicopathologic development of oral cancer. Head Neck 34:405–411. https://doi.org/10.1002/hed.21746

    Article  PubMed  Google Scholar 

  38. Rao SK, Pavicevic Z, Du Z et al (2010) Pro-inflammatory genes as biomarkers and therapeutic targets in oral squamous cell carcinoma. J Biol Chem 285:32512–32521. https://doi.org/10.1074/jbc.M110.150490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Batta N, Pandey M (2019) Mutational spectrum of tobacco associated oral squamous carcinoma and its therapeutic significance. World J Surg Oncol 2:1–12

    Google Scholar 

  40. Suenaga N, Kuramitsu M, Komure K et al (2019) Loss of tumor suppressor cyld expression triggers cisplatin resistance in oral squamous cell carcinoma. Int J Mol Sci 20:1–12. https://doi.org/10.3390/ijms20205194

    Article  CAS  Google Scholar 

  41. Gillison ML, Akagi K, Xiao W et al (2019) Human papillomavirus and the landscape of secondary genetic alterations in oral cancers. Genome Res 29:1–17. https://doi.org/10.1101/gr.241141.118.9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Arita H, Nagata M, Yoshida R et al (2017) FBXW7 expression affects the response to chemoradiotherapy and overall survival among patients with oral squamous cell carcinoma: a single-center retrospective study. Tumor Biol. https://doi.org/10.1177/1010428317731771

    Article  Google Scholar 

  43. Er T, Wang Y, Chen C et al (2015) Molecular characterization of oral squamous cell carcinoma using targeted next-generation sequencing. Oral Dis 21:872–878. https://doi.org/10.1111/odi.12357

    Article  PubMed  Google Scholar 

  44. Dds HP, Dds NC, Dds YW et al (2020) Upregulated NPM1 is an independent biomarker to predict progression and prognosis of oral squamous cell carcinomas in Taiwan. Head Neck 42:5–13. https://doi.org/10.1002/hed.25971

    Article  Google Scholar 

  45. Shandilya J, Venkatesh S, Gadad SS (2009) Acetylated NPM1 localizes in the nucleoplasm and regulates transcriptional activation of genes implicated in oral cancer manifestation acetylated NPM1 localizes in the nucleoplasm and regulates transcriptional activation of genes implicated in oral cancer. Mol Cell Biol 29:5115–5127. https://doi.org/10.1128/MCB.01969-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cohen Y, Goldenberg-cohen N, Shalmon B et al (2011) Mutational analysis of PTEN/PIK3CA/AKT pathway in oral squamous cell carcinoma. Oral Oncol 47:946–950. https://doi.org/10.1016/j.oraloncology.2011.07.013

    Article  CAS  PubMed  Google Scholar 

  47. Patel KR, Vajaria BN, Singh RD et al (2018) Clinical implications of p53 alterations in oral cancer progression: a review from India. Exp Oncol 40:10–18

    Article  CAS  Google Scholar 

  48. Nakagaki T, Tamura M, Kobashi K et al (2017) Profiling cancer-related gene mutations in oral squamous cell carcinoma from Japanese patients by targeted amplicon sequencing. Oncotarget 8:59113–59122

    Article  Google Scholar 

  49. Bernardes VF, Gleber-netto FO, Sousa SF et al (2010) Clinical significance of EGFR, Her-2 and EGF in oral squamous cell carcinoma: a case control study. J Exp Clin Cancer Res 29:40. https://doi.org/10.1186/1756-9966-29-40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Murugan AK, Munirajan AK, Tsuchida N (2012) Ras oncogenes in oral cancer: the past 20 years. Oral Oncol 48:383–392. https://doi.org/10.1016/j.oraloncology.2011.12.006

    Article  CAS  PubMed  Google Scholar 

  51. Pallavi N, Nalabolu GRK, Hiremath SKS (2018) Bcl-2 and c-Myc expression in oral dysplasia and oral squamous cell carcinoma: an immunohistochemical study to assess tumor progression. J oral Maxillofac Pathol. https://doi.org/10.4103/jomfp.JOMFP

    Article  PubMed  PubMed Central  Google Scholar 

  52. Matsuo FS, Andrade MF, Loyola AM et al (2018) Pathologic significance of AKT, mTOR, and GSK3β proteins in oral squamous cell carcinoma-affected patients. Virchows Arch 472:983–997. https://doi.org/10.1007/s00428-018-2318-0

    Article  CAS  PubMed  Google Scholar 

  53. Wang HC, Chiang WF, Huang HH et al (2014) Src-homology 2 domain-containing tyrosine phosphatase 2 promotes oral cancer invasion and metastasis. BMC Cancer 14:1–13. https://doi.org/10.1186/1471-2407-14-442

    Article  CAS  Google Scholar 

  54. Gkouveris I, Nikitakis NG (2017) Role of JNK signaling in oral cancer: a mini review. Tumor Biol. https://doi.org/10.1177/1010428317711659

    Article  Google Scholar 

  55. Sun Z, Liu Q, Ye D et al (2018) Role of c-Met in the progression of human oral squamous cell carcinoma and its potential as a therapeutic target. Oncol Rep 39:209–216. https://doi.org/10.3892/or.2017.6073

    Article  CAS  PubMed  Google Scholar 

  56. Xie X, Wang Z, Chen F et al (2016) Roles of FGFR in oral carcinogenesis. Cell Prolif 49:261–269. https://doi.org/10.1111/cpr.12260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Shiah SG, Shieh YS, Chang JY (2016) The role of Wnt signaling in squamous cell carcinoma. J Dent Res 95:129–134. https://doi.org/10.1177/0022034515613507

    Article  CAS  PubMed  Google Scholar 

  58. Jimi E, Kokabu S, Matsubara T et al (2016) NF-κB acts as a multifunctional modulator in bone invasion by oral squamous cell carcinoma. Oral Sci Int 13:1–6. https://doi.org/10.1016/S1348-8643(15)00038-5

    Article  Google Scholar 

  59. Monteiro LS, Diniz-freitas M, Warnakulasuriya S et al (2018) Prognostic significance of cyclins A2, B1, D1, and E1 and CCND1 numerical aberrations in oral squamous cell carcinomas. Anal Cell Pathol. https://doi.org/10.1155/2018/7253510

    Article  Google Scholar 

  60. Yoshida T, Miyagawa K, Odagiri H et al (1987) Genomic sequence of hst, a transforming gene encoding a protein homologous to fibroblast growth factors and the int-2-encoded protein. Proc Natl Acad Sci USA 84:7305–7309. https://doi.org/10.1073/pnas.84.20.7305

    Article  CAS  PubMed  Google Scholar 

  61. Williams HK (2000) Molecular pathogenesis of oral squamous carcinoma. J Clin Pathol Mol Pathol 53:165–172. https://doi.org/10.1136/mp.53.4.165

    Article  CAS  Google Scholar 

  62. Zhu G, He Y, Yang S et al (2015) Identification of gene and microRNA signatures for oral cancer developed from oral leukoplakia. Biomed Res Int. https://doi.org/10.1155/2015/841956

    Article  PubMed  PubMed Central  Google Scholar 

  63. Koole K, Peeters T, van Hengel OR, Brinkhuis A, van Es RJ, Willems SM (2016) RET protein is overexpressed in oral squamous cell carcinoma. Histopathology 69:1085–1087

    Article  Google Scholar 

  64. Zeng Q, Tao X, Huang F et al (2016) Overexpression of miR-155 promotes the proliferation and invasion of oral squamous carcinoma cells by regulating BCL6/cyclin D2. Int J Mol Med 37:1274–1280. https://doi.org/10.3892/ijmm.2016.2529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sterenczak KA, Eckardt A, Kampmann A et al (2014) HMGA1 and HMGA2 expression and comparative analyses of HMGA2, Lin28 and let-7 miRNAs in oral squamous cell carcinoma. BMC Cancer 14:1–11. https://doi.org/10.1186/1471-2407-14-694

    Article  CAS  Google Scholar 

  66. Nakashiro KI, Tanaka H, Goda H et al (2015) Identification of Akt1 as a potent therapeutic target for oral squamous cell carcinoma. Int J Oncol 47:1273–1281. https://doi.org/10.3892/ijo.2015.3134

    Article  CAS  PubMed  Google Scholar 

  67. Pavithra V, Kumari K, Haragannavar VC et al (2017) Possible role of Bcl-2 expression in metastatic and non metastatic oral squamous cell carcinoma. J Clin Diagnostic Res. https://doi.org/10.7860/JCDR/2017/29363.10601

    Article  Google Scholar 

  68. Deepak Roshan VG, Sinto MS, Thomas S, Kannan S (2018) Cyclin D1 overexpression associated with activation of STAT3 in oral carcinoma patients from South India. J Cancer Res Ther 14:403–408. https://doi.org/10.4103/0973-1482.188295

    Article  CAS  PubMed  Google Scholar 

  69. Sabir M, Baig RM, Mahjabeen I, Kayani MA (2013) Significance of cyclin D1 polymorphisms in patients with head and neck cancer. Int J Biol Mark 28:49–55. https://doi.org/10.5301/JBM.2012.9768

    Article  CAS  Google Scholar 

  70. Kumar R, Samal SK, Routray S et al (2017) Identification of oral cancer related candidate genes by integrating protein-protein interactions, gene ontology, pathway analysis and immunohistochemistry. Sci Rep 7:1–18. https://doi.org/10.1038/s41598-017-02522-5

    Article  CAS  Google Scholar 

  71. Cai Z (2014) β-Catenin expression pattern in primary oral squamous cell carcinoma. Chin Med J 121:1866–1870. https://doi.org/10.1097/00029330-200810010-00003

    Article  Google Scholar 

  72. Nakashima T, Tomita H, Hirata A et al (2017) Promotion of cell proliferation by the proto-oncogene DEK enhances oral squamous cell carcinogenesis through field cancerization. Cancer Med 6:2424–2439. https://doi.org/10.1002/cam4.1157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Chou C, Hsieh M, Chuang C, Lin J (2017) Functional FGFR4 Gly388Arg polymorphism contributes to oral squamous cell carcinoma susceptibility. Oncotarget 8:96225–96238

    Article  Google Scholar 

  74. Krishna A, Singh S, Singh V et al (2018) Does Harvey-Ras gene expression lead to oral squamous cell carcinoma ? A clinicopathological aspect. J Oral Maxillofac Pathol 22:65

    Article  Google Scholar 

  75. Al-Rawi N, Ghazi A, Merza M (2014) PIK3CB and K-ras in oral squamous cell carcinoma. A possible cross-talk! J Orofac Sci 6:99

    Article  CAS  Google Scholar 

  76. Ralhan R, Sandhya A (2000) Induction of MDM2-P2 transcripts correlates with stabilized wild-type p53 in betel- and tobacco-related human oral cancer. Am J Pathol 157:587–596. https://doi.org/10.1016/S0002-9440(10)64569-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Izumchenko E, Sun K, Jones S et al (2015) Notch1 mutations are drivers of oral tumorigenesis. Cancer Prev Res 8:277–286. https://doi.org/10.1158/1940-6207.CAPR-14-0257

    Article  CAS  Google Scholar 

  78. Murugan AK, Munirajan AK, Tsuchida N (2013) Genetic deregulation of the PIK3CA oncogene in oral cancer. Cancer Lett 338:193–203. https://doi.org/10.1016/j.canlet.2013.04.005

    Article  CAS  PubMed  Google Scholar 

  79. Wan X, Li X, Yang J et al (2015) Genetic association between PIK3CA gene and oral squamous cell carcinoma: a case control study conducted in Chongqing, China. Int J Clin Exp Pathol 8:13360–13366

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Sathiyamoorthy J, ShyamSundar V, Babu NA et al (2018) Study on PIK3CA gene mutations in oral squamous cell carcinoma among South Indian populations. Biomed Pharmacol J 11:1023–1030

    Article  CAS  Google Scholar 

  81. Zhang J, Zhang F, Niu R (2015) Functions of Shp2 in cancer. J Cell Mol Med 19:2075–2083. https://doi.org/10.1111/jcmm.12618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Zhang Y, Wang Y, Wu J, Li L (2013) XRCC1 Arg194Trp polymorphism is associated with oral cancer risk: evidence from a meta-analysis. Tumor Biol 34:2321–2327. https://doi.org/10.1007/s13277-013-0779-y

    Article  CAS  Google Scholar 

  83. Wood RD, Doublié S (2016) DNA polymerase θ (POLQ), double-strand break repair, and cancer. DNA Repair 44:22–32. https://doi.org/10.1016/j.dnarep.2016.05.003.DNA

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Hino M, Kamo M, Saito D et al (2016) Transforming growth factor-β1 induces invasion ability of HSC-4 human oral squamous cell carcinoma cells through the slug/WNT-5b/MMP-10 signalling axis. J Biochem 159:631–640. https://doi.org/10.1093/jb/mvw007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Liu X, Cao Y, Zhang Y et al (2019) Regulatory effect of MiR103 on proliferation, EMT and invasion of oral squamous carcinoma cell through SALL4. Eur Rev Med Pharmacol Sci 23:9931–9938

    CAS  PubMed  Google Scholar 

  86. Chen J, Mikelis CM, Zhang Y, Gutkind JS (2013) TRAIL induces apoptosis in oral squamous carcinoma cells : a crosstalk with oncogenic Ras regulated cell surface expression of death receptor 5. Oncotarget 4:206–217

    Article  CAS  Google Scholar 

  87. Savita JK, Kumar BNY, Nayak VN (2018) Matrix metalloproteinases in oral squamous cell carcinoma—a review. J Adv Clin Res Insights 5:124–126

    Article  Google Scholar 

  88. Geng F, Wang Q, Li C et al (2019) Identification of potential candidate genes of oral cancer in response to chronic infection with porphyromonas gingivalis using bioinformatical analyses. Front Oncol 9:1–12. https://doi.org/10.3389/fonc.2019.00091

    Article  Google Scholar 

  89. Monteiro LS, Delgado ML, Ricardo S et al (2014) EMMPRIN expression in oral squamous cell carcinomas: correlation with tumor proliferation and patient survival. Biomed Res Int. https://doi.org/10.1155/2014/905680

    Article  PubMed  PubMed Central  Google Scholar 

  90. Benhamou Y, Picco V, Pagès G (2016) The telomere proteins in tumorigenesis and clinical outcomes of oral squamous cell carcinoma. Oral Oncol 57:46–53. https://doi.org/10.1016/j.oraloncology.2016.04.006

    Article  CAS  PubMed  Google Scholar 

  91. MacHa MA, Matta A, Sriram U et al (2010) Clinical significance of TC21 overexpression in oral cancer. J Oral Pathol Med 39:477–485. https://doi.org/10.1111/j.1600-0714.2009.00854.x

    Article  CAS  PubMed  Google Scholar 

  92. Fillies T, Jogschies M, Kleinheinz J et al (2007) Cytokeratin alteration in oral leukoplakia and oral squamous cell carcinoma. Oncol Rep 18:639–643. https://doi.org/10.3892/or.18.3.639

    Article  PubMed  Google Scholar 

  93. Min A, Zhu C, Peng S et al (2015) MicroRNAs as important players and biomarkers in oral carcinogenesis. Biomed Res Int. https://doi.org/10.1155/2015/186904

    Article  PubMed  PubMed Central  Google Scholar 

  94. Ghafouri-Fard S, Mohammad-Rahimi H, Jazaeri M, Taheri M (2020) Expression and function of long non-coding RNAs in head and neck squamous cell carcinoma. Exp Mol Pathol 112:104353. https://doi.org/10.1016/j.yexmp.2019.104353

    Article  CAS  PubMed  Google Scholar 

  95. Fathi N, Ahmadian E, Shahi S et al (2019) Role of vitamin D and vitamin D receptor (VDR) in oral cancer. Biomed Pharmacother 109:391–401. https://doi.org/10.1016/j.biopha.2018.10.102

    Article  CAS  PubMed  Google Scholar 

  96. Yang G, Yang Y, Tang H, Yang K (2020) Loss of the clock gene Per1 promotes oral squamous cell carcinoma progression via the AKT/mTOR pathway. Cancer Sci 00:1–13. https://doi.org/10.1111/cas.14362

    Article  CAS  Google Scholar 

  97. Lambert DW, Ee H, Ce DO et al (2017) Angiotensin 1–7 inhibits angiotensin II-stimulated head and neck cancer progression. Eur J Oral Sci 125:247–257. https://doi.org/10.1111/eos.12356

    Article  CAS  PubMed  Google Scholar 

  98. Tolentino EDS, Centurion BS, Ferreira LHC et al (2011) Oral adverse effects of head and neck radiotherapy: Literature review and suggestion of a clinical oral care guideline for irradiated patients. J Appl Oral Sci 19:448–454. https://doi.org/10.1590/S1678-77572011000500003

    Article  PubMed Central  Google Scholar 

  99. Hartner L (2018) Chemotherapy for oral cancer. Dent Clin N Am 62:87–97. https://doi.org/10.1016/j.cden.2017.08.006

    Article  PubMed  Google Scholar 

  100. Nygren P (2001) What is cancer chemotherapy? Acta Oncol 40:166–174. https://doi.org/10.1080/02841860151116204

    Article  CAS  PubMed  Google Scholar 

  101. Aggarwal S, John S, Sapra L et al (2018) Targeted disruption of PI3K/Akt/mTOR signaling pathway, via PI3K inhibitors, promotes growth inhibitory effects in oral cancer cells. Cancer Chemother Pharmacol 83:451–461. https://doi.org/10.1007/s00280-018-3746-x

    Article  CAS  PubMed  Google Scholar 

  102. Guigay J, Tahara M, Licitra L et al (2019) The evolving role of taxanes in combination with cetuximab for the treatment of recurrent and/or metastatic squamous cell carcinoma of the head and neck: evidence, advantages, and future directions. Front Oncol. https://doi.org/10.3389/fonc.2019.00668

    Article  PubMed  PubMed Central  Google Scholar 

  103. Trédan O, Galmarini CM, Patel K, Tannock IF (2007) Drug resistance and the solid tumor microenvironment. J Natl Cancer Inst 99:1441–1454. https://doi.org/10.1093/jnci/djm135

    Article  CAS  PubMed  Google Scholar 

  104. Coutinho-Camillo CM, Loureno SV, Nishimoto IN et al (2010) Expression of Bcl-2 family proteins and association with clinicopathological characteristics of oral squamous cell carcinoma. Histopathology 57:304–316. https://doi.org/10.1111/j.1365-2559.2010.03621.x

    Article  PubMed  Google Scholar 

  105. Chiu TJ, Chen CH, Chien CY et al (2011) High ERCC1 expression predicts cisplatin-based chemotherapy resistance and poor outcome in unresectable squamous cell carcinoma of head and neck in a betel-chewing area. J Transl Med 9:1–8. https://doi.org/10.1186/1479-5876-9-31

    Article  CAS  Google Scholar 

  106. Zhang P, Zhang Z, Zhou X et al (2006) Identification of genes associated with cisplatin resistance in human oral squamous cell carcinoma cell line. BMC Cancer 6:1–11. https://doi.org/10.1186/1471-2407-6-224

    Article  CAS  Google Scholar 

  107. Li X, Guo S, Xiong XK et al (2019) Combination of quercetin and cisplatin enhances apoptosis in OSCC cells by downregulating xIAP through the NF-kB pathway. J Cancer 10:4509–4521. https://doi.org/10.7150/jca.31045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Wang D, Qian G, Zhang H et al (2017) HER3 targeting sensitizes HNSCC to cetuximab by reducing HER3 activity and HER2/HER3 dimerization: evidence from cell line and patient-derived xenograft models. Clin Cancer Res 23:677–686. https://doi.org/10.1158/1078-0432.CCR-16-0558

    Article  CAS  PubMed  Google Scholar 

  109. Huang S, Benavente S, Armstrong EA et al (2011) P53 modulates acquired resistance to EGFR inhibitors and radiation. Cancer Res 71:7071–7079. https://doi.org/10.1158/0008-5472.CAN-11-0128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Perez A, Neskey DM, Wen J, Pereira L, Reateguic EP, Jarrard-Goodwin W, Carraway KL, Franzmann EJ (2013) CD44 interacts with EGFR and promotes head and neck squamous cell carcinoma initiation and progression. Oral Oncol 49:306–313. https://doi.org/10.1016/j.oraloncology.2012.11.009

    Article  CAS  PubMed  Google Scholar 

  111. Yang H, Mo C, Xun Y et al (2019) Combination of cetuximab with met inhibitor in control of cetuximab-resistant oral squamous cell carcinoma. Am J Transl Res 11:2370–2381

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Fang C, Li Y (2019) Prospective applications of microRNAs in oral cancer (Review). Oncol Lett 18:3974–3984. https://doi.org/10.3892/ol.2019.10751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Kashyap T, Pramanik KK, Nath N et al (2018) Crosstalk between Raf-MEK-ERK and PI3K-Akt-GSK3 β signaling networks promotes chemoresistance, invasion/migration and stemness via expression of CD44 variants (v4 and v6) in oral cancer. Oral Oncol 86:234–243. https://doi.org/10.1016/j.oraloncology.2018.09.028

    Article  CAS  PubMed  Google Scholar 

  114. Kujan O, Huang G, Ravindran A et al (2019) The role of cyclin-dependent kinases in oral potentially malignant disorders and oral squamous cell carcinoma. J Oral Pathol Med 48:560–565. https://doi.org/10.1111/jop.12903

    Article  PubMed  Google Scholar 

  115. Mastronikolis NS, Tsiambas E, Papadas TA, Fotiades PP, Papadas AT, Mastronikolis SN, Kastanioudakis I, Ragos V (2017) mTOR deregulation in oral cavity squamous cell carcinoma. J BUON 22:610–613

    PubMed  Google Scholar 

  116. Mirza Y, Ali SMA, Awan MS et al (2018) Overexpression of EGFR in oral premalignant lesions and OSCC and its impact on survival and recurrence. Oncomedicine 3:28–36. https://doi.org/10.7150/oncm.22614

    Article  Google Scholar 

  117. Singhal A, Hadi R, Chaturvedi A et al (2016) Vascular endothelial growth factor expression in oral cancer and its role as a predictive marker: a prospective study. Saudi Surg J 4:52. https://doi.org/10.4103/2320-3846.183673

    Article  Google Scholar 

  118. Chu C, Zhang X (2020) Anlotinib is effective in patients with advanced oral cancer ? Med Hypotheses 137:109578. https://doi.org/10.1016/j.mehy.2020.109578

    Article  CAS  PubMed  Google Scholar 

  119. Kozakiewicz P, Grzybowska-Szatkowska L (2018) Application of molecular targeted therapies in the treatment of head and neck squamous cell carcinoma. Oncol Lett 15:7497–7505. https://doi.org/10.3892/ol.2018.8300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajiniraja Muniyan.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

Not applicable: no human or animal subjects are directly involved in this research.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karunakaran, K., Muniyan, R. Genetic alterations and clinical dimensions of oral cancer: a review. Mol Biol Rep 47, 9135–9148 (2020). https://doi.org/10.1007/s11033-020-05927-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05927-0

Keywords

Navigation