Skip to main content

Advertisement

Log in

ATP-binding cassette g1 regulates osteogenesis via Wnt/β-catenin and AMPK signaling pathways

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The dysfunction of bone marrow mesenchymal stem cells (BMSCs) in balancing osteogenesis and adipogenesis plays an important role in the occurrence and development of osteoporosis. It’s still unknown that whether ATP-binding cassette g1 (Abcg1), a well-proved regulation gene of adipogenesis, regulates osteogenesis. In our previous study, we identified 30 differentially expressed genes in osteogenesis and found the expression level ofAbcg1 negatively related to osteogenesis among these genes. Abcg1 is a well-proven adipogenesis regulator and cholesterol transporter, but it’s role in osteogenesis remained unknown. In this study we found it may control osteogenesis, further elucidating the exact role of Abcg1 in regulating osteoblast differentiation would help propose new strategies to prevent and treat osteoporosis. Therefore, we established Abcg1 up- or down-expressed C3H10T1/2 and C2C12 cell lines and verified that Abcg1 knockdown enhanced expression of osteogenic factors runt-related transcription factor 2 (Runx2) and alkaline phosphatase (ALP), while Abcg1 overexpression reversed the promoting effect. Furthermore, we confirmed that Abcg1 modulated osteogenesis via the Wnt/β-catenin and AMPK signaling pathways. taken together, these results suggest that Abcg1 may have an important role in regulating osteogenesis via Wnt/β-catenin and AMPK signaling pathways, and expect to be a potential therapeutic target for osteoporosis.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Black DM, Rosen CJ (2016) Clinical practice Postmenopausal osteoporosis. N Engl J Med 374(3):254–262. https://doi.org/10.1056/NEJMcp1513724

    Article  CAS  PubMed  Google Scholar 

  2. Nehlin JO, Jafari A, Tencerova M, Kassem M (2019) Aging and lineage allocation changes of bone marrow skeletal (stromal) stem cells. Bone 123:265–273. https://doi.org/10.1016/j.bone.2019.03.041

    Article  PubMed  Google Scholar 

  3. Cai R, Nakamoto T, Hoshiba T, Kawazoe N, Chen G (2016) Matrices secreted during simultaneous osteogenesis and adipogenesis of mesenchymal stem cells affect stem cells differentiation. Acta Biomater 35:185–193. https://doi.org/10.1016/j.actbio.2016.02.009

    Article  CAS  PubMed  Google Scholar 

  4. Rauch A, Haakonsson AK, Madsen JGS, Larsen M, Forss I, Madsen MR, Van Hauwaert EL, Wiwie C, Jespersen NZ, Tencerova M, Nielsen R, Larsen BD, Rottger R, Baumbach J, Scheele C, Kassem M, Mandrup S (2019) Osteogenesis depends on commissioning of a network of stem cell transcription factors that act as repressors of adipogenesis. Nat Genet 51(4):716–727. https://doi.org/10.1038/s41588-019-0359-1

    Article  CAS  PubMed  Google Scholar 

  5. Yue R, Zhou BO, Shimada IS, Zhao Z, Morrison SJ (2016) Leptin receptor promotes adipogenesis and reduces osteogenesis by regulating mesenchymal stromal cells in adult bone marrow. Cell Stem Cell 18(6):782–796. https://doi.org/10.1016/j.stem.2016.02.015

    Article  CAS  PubMed  Google Scholar 

  6. Roenneberg T, Merrow M (2016) The circadian clock and human health. Curr Biol 26(10):R432–443. https://doi.org/10.1016/j.cub.2016.04.011

    Article  CAS  PubMed  Google Scholar 

  7. Gabriel BM, Zierath JR (2019) Circadian rhythms and exercise - re-setting the clock in metabolic disease. Nat Rev Endocrinol 15(4):197–206. https://doi.org/10.1038/s41574-018-0150-x

    Article  PubMed  Google Scholar 

  8. Song C, Wang J, Kim B, Lu C, Zhang Z, Liu H, Kang H, Sun Y, Guan H, Fang Z, Li F (2018) Insights into the role of circadian rhythms in bone metabolism: a promising intervention target? Biomed Res Int 2018:9156478. https://doi.org/10.1155/2018/9156478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Maria S, Witt-Enderby PA (2014) Melatonin effects on bone: potential use for the prevention and treatment for osteopenia, osteoporosis, and periodontal disease and for use in bone-grafting procedures. J Pineal Res 56(2):115–125. https://doi.org/10.1111/jpi.12116

    Article  CAS  PubMed  Google Scholar 

  10. Kim H, Koh H, Ku SY, Kim SH, Kim JH, Kim JG (2014) Association between polymorphisms in period genes and bone density in postmenopausal Korean women. Climacteric 17(5):605–612. https://doi.org/10.3109/13697137.2014.905527

    Article  CAS  PubMed  Google Scholar 

  11. Kettner NM, Mayo SA, Hua J, Lee C, Moore DD, Fu L (2015) Circadian dysfunction induces leptin resistance in mice. Cell Metab 22(3):448–459. https://doi.org/10.1016/j.cmet.2015.06.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kushibiki T, Awazu K (2008) Controlling osteogenesis and adipogenesis of mesenchymal stromal cells by regulating a circadian clock protein with laser irradiation. Int J Med Sci 5(6):319–326. https://doi.org/10.7150/ijms.5.319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sun S, Zhou L, Yu Y, Zhang T, Wang M (2018) Knocking down clock control gene CRY1 decreases adipogenesis via canonical Wnt/beta-catenin signaling pathway. Biochem Biophys Res Commun 506(3):746–753. https://doi.org/10.1016/j.bbrc.2018.10.134

    Article  CAS  PubMed  Google Scholar 

  14. Zhou L, Zhang T, Sun S, Yu Y, Wang M (2018) Cryptochrome 1 promotes osteogenic differentiation of human osteoblastic cells via Wnt/beta-Catenin signaling. Life Sci 212:129–137. https://doi.org/10.1016/j.lfs.2018.09.053

    Article  CAS  PubMed  Google Scholar 

  15. Zhou L, He J, Sun S, Yu Y, Zhang T, Wang M (2019) Cryptochrome 1 regulates osteoblast differentiation via the AKT kinase and extracellular signal-regulated kinase signaling pathways. Cell Reprogram 21(3):141–151. https://doi.org/10.1089/cell.2018.0054

    Article  CAS  PubMed  Google Scholar 

  16. Chen Q, Shou P, Zheng C, Jiang M, Cao G, Yang Q, Cao J, Xie N, Velletri T, Zhang X, Xu C, Zhang L, Yang H, Hou J, Wang Y, Shi Y (2016) Fate decision of mesenchymal stem cells: adipocytes or osteoblasts? Cell Death Differ 23(7):1128–1139. https://doi.org/10.1038/cdd.2015.168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li H, Fan J, Fan L, Li T, Yang Y, Xu H, Deng L, Li J, Li T, Weng X, Wang S, Chunhua Zhao R (2018) MiRNA-10b reciprocally stimulates osteogenesis and inhibits adipogenesis partly through the TGF-beta/SMAD2 signaling pathway. Aging Dis 9(6):1058–1073. https://doi.org/10.14336/ad.2018.0214

    Article  PubMed  PubMed Central  Google Scholar 

  18. Yvan-Charvet L, Wang N, Tall AR (2010) Role of HDL, ABCA1, and ABCG1 transporters in cholesterol efflux and immune responses. Arterioscler Thromb Vasc Biol 30(2):139–143. https://doi.org/10.1161/atvbaha.108.179283

    Article  CAS  PubMed  Google Scholar 

  19. Buchmann J, Meyer C, Neschen S, Augustin R, Schmolz K, Kluge R, Al-Hasani H, Jurgens H, Eulenberg K, Wehr R, Dohrmann C, Joost HG, Schurmann A (2007) Ablation of the cholesterol transporter adenosine triphosphate-binding cassette transporter G1 reduces adipose cell size and protects against diet-induced obesity. Endocrinology 148(4):1561–1573. https://doi.org/10.1210/en.2006-1244

    Article  CAS  PubMed  Google Scholar 

  20. Ramasamy I (2014) Recent advances in physiological lipoprotein metabolism. Clin Chem Lab Med 52(12):1695–1727. https://doi.org/10.1515/cclm-2013-0358

    Article  CAS  PubMed  Google Scholar 

  21. Wei H, Tarling EJ, McMillen TS, Tang C, LeBoeuf RC (2015) ABCG1 regulates mouse adipose tissue macrophage cholesterol levels and ratio of M1 to M2 cells in obesity and caloric restriction. J Lipid Res 56(12):2337–2347. https://doi.org/10.1194/jlr.M063354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Komori T (2019) Regulation of proliferation, differentiation and functions of osteoblasts by Runx2. Int J Mol Sci 20(7):1694. https://doi.org/10.3390/ijms20071694

    Article  CAS  PubMed Central  Google Scholar 

  23. Wang X, Luo E, Bi R, Ye B, Hu J, Zou S (2018) Wnt/beta-catenin signaling is required for distraction osteogenesis in rats. Connect Tissue Res 59(1):45–54. https://doi.org/10.1080/03008207.2017.1300154

    Article  CAS  PubMed  Google Scholar 

  24. Wang Y, Zhang X, Shao J, Liu H, Liu X, Luo E (2017) Adiponectin regulates BMSC osteogenic differentiation and osteogenesis through the Wnt/beta-catenin pathway. Sci Rep 7(1):3652. https://doi.org/10.1038/s41598-017-03899-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chen SC, Brooks R, Houskeeper J, Bremner SK, Dunlop J, Viollet B, Logan PJ, Salt IP, Ahmed SF, Yarwood SJ (2017) Metformin suppresses adipogenesis through both AMP-activated protein kinase (AMPK)-dependent and AMPK-independent mechanisms. Mol Cell Endocrinol 440:57–68. https://doi.org/10.1016/j.mce.2016.11.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yang Q, Liang X, Sun X, Zhang L, Fu X, Rogers CJ, Berim A, Zhang S, Wang S, Wang B, Foretz M, Viollet B, Gang DR, Rodgers BD, Zhu MJ, Du M (2016) AMPK/alpha-ketoglutarate axis dynamically mediates DNA demethylation in the Prdm16 promoter and brown adipogenesis. Cell Metab 24(4):542–554. https://doi.org/10.1016/j.cmet.2016.08.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang C, Lin K, Chang J, Sun J (2013) Osteogenesis and angiogenesis induced by porous beta-CaSiO(3)/PDLGA composite scaffold via activation of AMPK/ERK1/2 and PI3K/Akt pathways. Biomaterials 34(1):64–77. https://doi.org/10.1016/j.biomaterials.2012.09.021

    Article  CAS  PubMed  Google Scholar 

  28. Wang YG, Qu XH, Yang Y, Han XG, Wang L, Qiao H, Fan QM, Tang TT, Dai KR (2016) AMPK promotes osteogenesis and inhibits adipogenesis through AMPK-Gfi1-OPN axis. Cell Signal 28(9):1270–1282. https://doi.org/10.1016/j.cellsig.2016.06.004

    Article  CAS  PubMed  Google Scholar 

  29. Maeda K, Kobayashi Y, Koide M, Uehara S, Okamoto M, Ishihara A, Kayama T, Saito M, Marumo K (2019) The regulation of bone metabolism and disorders by Wnt signaling. Int J Mol Sci 20(22):5525. https://doi.org/10.3390/ijms20225525

    Article  CAS  PubMed Central  Google Scholar 

  30. Christodoulides C, Lagathu C, Sethi JK, Vidal-Puig A (2009) Adipogenesis and WNT signalling. Trends Endocrinol Metab 20(1):16–24. https://doi.org/10.1016/j.tem.2008.09.002

    Article  CAS  PubMed  Google Scholar 

  31. Yuan Z, Li Q, Luo S, Liu Z, Luo D, Zhang B, Zhang D, Rao P, Xiao J (2016) PPARgamma and Wnt signaling in adipogenic and osteogenic differentiation of mesenchymal stem cells. Curr Stem Cell Res Ther 11(3):216–225. https://doi.org/10.2174/1574888x10666150519093429

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was support by the Key Department of Minhang District (2017MWTZ02); the Key Department of the Fifth People's Hospital of Shanghai (2017WYZDZK02); the Fifth People's Hospital of Shanghai, Fudan University (2018WYZT01); and the Minhang District Leading Talent Development Funds (Grant No. 201512).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Minghai Wang or Yang Hong.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11033_2020_5800_MOESM1_ESM.tif

Supplementary file1 (TIF 226 kb). Fig S1: The establishment of Abcg1 down-regulated cell lines. A. Protein levels of Abcg1 in control and Abcg1-shRNA groups. B. and C. Measurement of Abcg1 knockdown efficiency in protein or mRNA levels. *P<0.05, **P<0.01, ***P<0.001

11033_2020_5800_MOESM2_ESM.tif

Supplementary file2 (TIF 710 kb). Fig S2: Overexpression of Abcg1 inhibits osteoblast differentiation via Wnt/β-catenin and AMPK signaling pathways. A. The establishment of Abcg1 overexpression C3H10T1/2 cell line. B. Osteogenesis and extracellular were inhibited in the Abcg1-cDNA group, measured using ALP staining, AR-S staining, and relative ALP activity assay. C. Abcg1 upregulation decreased the expression of Runx2 and ALP. D. The expression of β-catenin and phosphorylation of GSK-3β and AMPK were blocked in the Abcg1-cDNA group. *P<0.05, **P<0.01, ***P<0.001

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, L., Sun, S., Zhang, T. et al. ATP-binding cassette g1 regulates osteogenesis via Wnt/β-catenin and AMPK signaling pathways. Mol Biol Rep 47, 7439–7449 (2020). https://doi.org/10.1007/s11033-020-05800-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05800-0

Keywords

Navigation