Skip to main content
Log in

Detection and characterisation of novel alternative splicing variants of the mitochondrial folate enzyme MTHFD2

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Through the process of alternative splicing, proteins with distinct biological functions and localisations are generated from a single gene. The mitochondrial folate metabolism enzyme methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) has been receiving attention in recent years as one of the most frequently upregulated metabolic enzymes across multiple tumour types. We hypothesized that alternative splicing of MTHFD2 could be a mechanism that generates novel isoforms of this enzyme, with potentially distinct and important biological functions. Multiple alternatively spliced MTHFD2 transcripts were first characterized in the UCSC and Ensemble genome browser. Subsequently, investigating the transcriptomic data for the Genotype-Tissue Expression (GTeX) project it was found that beyond the canonical MTHFD2 transcript, alternative transcripts lacking the second exon of MTHFD2 are also common. The presence of MTHFD2 transcripts lacking the second exon was confirmed by RT-PCR in normal and cancer cells. Translation of MTHFD2 transcripts lacking this second exon are predicted to generate a truncated protein lacking the first 102 N-terminal amino acids of the full-length protein, including the mitochondrial transport sequence. Hence, the truncated MTHFD2 protein could be an isoform with distinct localisation and functions. However, we were not able to confirm the generation of a stable truncated MTHFD2 protein in eukaryotic cells. This study characterizes for the first time alternative spliced transcripts of the enzyme MTHFD2, although further work is required to investigate their biological significance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yang M, Vousden KH (2016) Serine and one-carbon metabolism in cancer. Nat Rev Cancer 16(10):650–662. https://doi.org/10.1038/nrc.2016.81

    Article  CAS  PubMed  Google Scholar 

  2. Newman AC, Maddocks ODK (2017) One-carbon metabolism in cancer. Br J Cancer 116(12):1499–1504. https://doi.org/10.1038/bjc.2017.118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Nilsson R, Jain M, Madhusudhan N, Sheppard NG, Strittmatter L, Kampf C, Huang J, Asplund A, Mootha VK (2014) Metabolic enzyme expression highlights a key role for MTHFD2 and the mitochondrial folate pathway in cancer. Nat Commun 5:3128. https://doi.org/10.1038/ncomms4128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pikman Y, Puissant A, Alexe G, Furman A, Chen LM, Frumm SM, Ross L, Fenouille N, Bassil CF, Lewis CA, Ramos A, Gould J, Stone RM, DeAngelo DJ, Galinsky I, Clish CB, Kung AL, Hemann MT, Vander Heiden MG, Banerji V, Stegmaier K (2016) Targeting MTHFD2 in acute myeloid leukemia. J Exp Med 213(7):1285–1306. https://doi.org/10.1084/jem.20151574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Koufaris C, Gallage S, Yang T, Lau CH, Valbuena GN, Keun HC (2016) Suppression of MTHFD2 in MCF-7 breast cancer cells increases glycolysis, dependency on exogenous glycine, and sensitivity to folate depletion. J Proteome Res 15(8):2618–2625. https://doi.org/10.1021/acs.jproteome.6b00188

    Article  CAS  PubMed  Google Scholar 

  6. Koufaris C, Valbuena GN, Pomyen Y, Tredwell GD, Nevedomskaya E, Lau CH, Yang T, Benito A, Ellis JK, Keun HC (2016) Systematic integration of molecular profiles identifies miR-22 as a regulator of lipid and folate metabolism in breast cancer cells. Oncogene 35(21):2766–2776. https://doi.org/10.1038/onc.2015.333

    Article  CAS  PubMed  Google Scholar 

  7. Ju HQ, Lu YX, Chen DL, Zuo ZX, Liu ZX, Wu QN, Mo HY, Wang ZX, Wang DS, Pu HY, Zeng ZL, Li B, Xie D, Huang P, Hung MC, Chiao PJ, Xu RH (2019) Modulation of redox homeostasis by inhibition of MTHFD2 in colorectal cancer: mechanisms and therapeutic implications. J Natl Cancer Inst 111(6):584–596. https://doi.org/10.1093/jnci/djy160

    Article  CAS  PubMed  Google Scholar 

  8. Green NH, Galvan DL, Badal SS, Chang BH, LeBleu VS, Long J, Jonasch E, Danesh FR (2019) MTHFD2 links RNA methylation to metabolic reprogramming in renal cell carcinoma. Oncogene 38(34):6211–6225. https://doi.org/10.1038/s41388-019-0869-4

    Article  CAS  PubMed  Google Scholar 

  9. Nilsson R, Nicolaidou V, Koufaris C (2019) Mitochondrial MTHFD isozymes display distinct expression, regulation, and association with cancer. Gene 716:144032. https://doi.org/10.1016/j.gene.2019.144032

    Article  CAS  PubMed  Google Scholar 

  10. Gustafsson Sheppard N, Jarl L, Mahadessian D, Strittmatter L, Schmidt A, Madhusudan N, Tegnér J, Lundberg EK, Asplund A, Jain M, Nilsson R (2015) The folate-coupled enzyme MTHFD2 is a nuclear protein and promotes cell proliferation. Sci Rep 5(1):15029. https://doi.org/10.1038/srep15029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Koufaris C, Nilsson R (2018) Protein interaction and functional data indicate MTHFD2 involvement in RNA processing and translation. Cancer Metab 6:12. https://doi.org/10.1186/s40170-018-0185-4

    Article  PubMed  PubMed Central  Google Scholar 

  12. Gilbert W (1978) Why genes in pieces? Nature 271(5645):501. https://doi.org/10.1038/271501a0

    Article  CAS  PubMed  Google Scholar 

  13. Anderson DD, Stover PJ (2009) SHMT1 and SHMT2 are functionally redundant in nuclear de novo thymidylate biosynthesis. PLoS ONE 4(6):e5839. https://doi.org/10.1371/journal.pone.0005839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Paone A, Marani M, Fiascarelli A, Rinaldo S, Giardina G, Contestabile R, Paiardini A, Cutruzzola F (2014) SHMT1 knockdown induces apoptosis in lung cancer cells by causing uracil misincorporation. Cell Death Dis 5:e1525. https://doi.org/10.1038/cddis.2014.482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wojtuszkiewicz A, Raz S, Stark M, Assaraf YG, Jansen G, Peters GJ, Sonneveld E, Kaspers GJ, Cloos J (2016) Folylpolyglutamate synthetase splicing alterations in acute lymphoblastic leukemia are provoked by methotrexate and other chemotherapeutics and mediate chemoresistance. Int J Cancer 138(7):1645–1656. https://doi.org/10.1002/ijc.29919

    Article  CAS  PubMed  Google Scholar 

  16. Waly M, Power-Charnitsky VA, Hodgson N, Sharma A, Audhya T, Zhang Y, Deth R (2016) Alternatively spliced methionine synthase in SH-SY5Y neuroblastoma cells: cobalamin and GSH dependence and inhibitory effects of neurotoxic metals and thimerosal. Oxid Med Cell Longev 2016:6143753. https://doi.org/10.1155/2016/6143753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bolusani S, Young BA, Cole NA, Tibbetts AS, Momb J, Bryant JD, Solmonson A, Appling DR (2011) Mammalian MTHFD2L encodes a mitochondrial methylenetetrahydrofolate dehydrogenase isozyme expressed in adult tissues. J Biol Chem 286(7):5166–5174. https://doi.org/10.1074/jbc.M110.196840

    Article  CAS  PubMed  Google Scholar 

  18. Shin M, Bryant JD, Momb J, Appling DR (2014) Mitochondrial MTHFD2L is a dual redox cofactor-specific methylenetetrahydrofolate dehydrogenase/methenyltetrahydrofolate cyclohydrolase expressed in both adult and embryonic tissues. J Biol Chem 289(22):15507–15517. https://doi.org/10.1074/jbc.M114.555573

    Article  CAS  PubMed  Google Scholar 

  19. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1):248–254. https://doi.org/10.1016/0003-2697(76)90527-3

    Article  CAS  Google Scholar 

  20. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259):680–685. https://doi.org/10.1038/227680a0

    Article  CAS  Google Scholar 

  21. Consortium GT, Laboratory DA, Coordinating Center -Analysis Working G, Statistical Methods groups-Analysis Working G, Enhancing Gg, Fund NIHC, Nih/Nci, Nih/Nhgri, Nih/Nimh, Nih/Nida, Biospecimen Collection Source Site N, Biospecimen Collection Source Site R, Biospecimen Core Resource V, Brain Bank Repository-University of Miami Brain Endowment B, Leidos Biomedical-Project M, Study E, Genome Browser Data I, Visualization EBI, Genome Browser Data I, Visualization-Ucsc Genomics Institute UoCSC, Lead a, Laboratory DA, Coordinating C, management NIHp, Biospecimen c, Pathology, e QTLmwg, Battle A, Brown CD, Engelhardt BE, Montgomery SB (2017) Genetic effects on gene expression across human tissues. Nature 550(7675):204–213. https://doi.org/10.1038/nature24277

    Article  Google Scholar 

  22. Vogtle FN, Wortelkamp S, Zahedi RP, Becker D, Leidhold C, Gevaert K, Kellermann J, Voos W, Sickmann A, Pfanner N, Meisinger C (2009) Global analysis of the mitochondrial N-proteome identifies a processing peptidase critical for protein stability. Cell 139(2):428–439. https://doi.org/10.1016/j.cell.2009.07.045

    Article  CAS  PubMed  Google Scholar 

  23. Fukasawa Y, Tsuji J, Fu SC, Tomii K, Horton P, Imai K (2015) MitoFates: improved prediction of mitochondrial targeting sequences and their cleavage sites. Mol Cell Proteomics 14(4):1113–1126. https://doi.org/10.1074/mcp.M114.043083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ducker GS, Chen L, Morscher RJ, Ghergurovich JM, Esposito M, Teng X, Kang Y, Rabinowitz JD (2016) Reversal of cytosolic one-carbon flux compensates for loss of the mitochondrial folate pathway. Cell Metab 23(6):1140–1153. https://doi.org/10.1016/j.cmet.2016.04.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Rabinowitz for providing the MTHFD2 KO cell lines used in this study.

Funding

C.K. was supported by an Advanced Post-doctoral Fellowship from the University of Cyprus.

Author information

Authors and Affiliations

Authors

Contributions

All authors participated in the design of the study and experiments, analyses of results, and in manuscript write-up. CK and VN performed experiments. CK conceived the study.

Corresponding author

Correspondence to Costas Koufaris.

Ethics declarations

Conflict of interest

The authors declare no conflicting of interest.

Ethical approval

This study does not contain any animal studies performed by any of the authors. For the case of human samples used in this study, informed consent was obtained from all individual participants.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PPTX 239 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nicolaidou, V., Papaneophytou, C. & Koufaris, C. Detection and characterisation of novel alternative splicing variants of the mitochondrial folate enzyme MTHFD2. Mol Biol Rep 47, 7089–7096 (2020). https://doi.org/10.1007/s11033-020-05775-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05775-y

Keywords

Navigation