Skip to main content

Advertisement

Log in

Bone metastases: a comprehensive review of the literature

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The last report of the World Health Organization (WHO) stated that approximately four million people experience bone pain due to malignant diseases. Among them, metastatic bone pain is one of the most important sources of complaint. The estimated median survival in the presence of bone metastases ranks from 10 to 12 weeks. Bone represents a potential target of distant metastases for the majority of malignant tumours. However, the exact incidence of bone metastases is unknown. Bone metastases have an important socio-economic impact, and due to the enhancement of the overall survivorship, their incidence is increasing. Malignant neoplasms such as lung, thyroid, renal cancer, multiple myeloma, and melanoma often metastasize to the bone. Bone metastases commonly localize to the spinal column, pelvis, shoulder, and distal femur. The proper treatment for painful skeletal metastases is still unknown. Hence, the purpose of this review of the literature was to update current evidence concerning the aetiogenesis, biological behaviour, and treatment algorithms for painful skeletal metastases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cancer Pain Relief and Palliative Care (1990) Report of a WHO Expert Committee. World Health Organ Tech Rep Ser 804:1–75

    Google Scholar 

  2. Berenson JR, Rosen LS, Howell A, Porter L, Coleman RE, Morley W, Dreicer R, Kuross SA, Lipton A, Seaman JJ (2001) Zoledronic acid reduces skeletal-related events in patients with osteolytic metastases. Cancer 91(7):1191–1200

    Article  CAS  PubMed  Google Scholar 

  3. Coleman RE (2001) Metastatic bone disease: clinical features, pathophysiology and treatment strategies. Cancer Treat Rev 27(3):165–176. https://doi.org/10.1053/ctrv.2000.0210

    Article  CAS  PubMed  Google Scholar 

  4. Selvaggi G, Scagliotti GV (2005) Management of bone metastases in cancer: a review. Crit Rev Oncol Hematol 56(3):365–378. https://doi.org/10.1016/j.critrevonc.2005.03.011

    Article  PubMed  Google Scholar 

  5. Macedo F, Ladeira K, Pinho F, Saraiva N, Bonito N, Pinto L, Goncalves F (2017) Bone metastases: an overview. Oncol Rev 11(1):321. https://doi.org/10.4081/oncol.2017.321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Li S, Peng Y, Weinhandl ED, Blaes AH, Cetin K, Chia VM, Stryker S, Pinzone JJ, Acquavella JF, Arneson TJ (2012) Estimated number of prevalent cases of metastatic bone disease in the US adult population. Clin Epidemiol 4:87–93. https://doi.org/10.2147/CLEP.S28339

    Article  PubMed  PubMed Central  Google Scholar 

  7. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61(2):69–90. https://doi.org/10.3322/caac.20107

    Article  PubMed  Google Scholar 

  8. Yoneda T, Sasaki A, Mundy GR (1994) Osteolytic bone metastasis in breast cancer. Breast Cancer Res Treat 32(1):73–84

    Article  CAS  PubMed  Google Scholar 

  9. Coleman RE (1997) Skeletal complications of malignancy. Cancer 80(8 Suppl):1588–1594

    Article  CAS  PubMed  Google Scholar 

  10. Coleman RE (6249s) Clinical features of metastatic bone disease and risk of skeletal morbidity. Clin Cancer Res 12(20 Pt 2):6243s–6249s. https://doi.org/10.1158/1078-0432.CCR-06-0931

    Article  PubMed  Google Scholar 

  11. Healey JH, Turnbull AD, Miedema B, Lane JM (1986) Acrometastases. A study of twenty-nine patients with osseous involvement of the hands and feet. J Bone Joint Surg Am 68(5):743–746

    Article  CAS  PubMed  Google Scholar 

  12. Pinkas L, Robinson D, Halperin N, Mindlin L, Cohenpour M, Baumer M, Home T (2001) 99mTc-MIBI scintigraphy in musculoskeletal tumors. J Nucl Med 42(1):33–37

    CAS  PubMed  Google Scholar 

  13. Kasalicky J, Krajska V (1998) The effect of repeated strontium-89 chloride therapy on bone pain palliation in patients with skeletal cancer metastases. Eur J Nucl Med 25(10):1362–1367

    Article  CAS  PubMed  Google Scholar 

  14. Galasko CS (1982) Mechanisms of lytic and blastic metastatic disease of bone. Clin Orthop Relat Res 169:20–27

    Google Scholar 

  15. Quattrocchi CC, Piciucchi S, Sammarra M, Santini D, Vincenzi B, Tonini G, Grasso RF, Zobel BB (2007) Bone metastases in breast cancer: higher prevalence of osteosclerotic lesions. Radiol Med 112(7):1049–1059. https://doi.org/10.1007/s11547-007-0205-x

    Article  CAS  PubMed  Google Scholar 

  16. Fischer M, Kampen WU (2012) Radionuclide therapy of bone metastases. Breast Care (Basel) 7(2):100–107. https://doi.org/10.1159/000337634

    Article  Google Scholar 

  17. Keller ET, Zhang J, Cooper CR, Smith PC, McCauley LK, Pienta KJ, Taichman RS (2001) Prostate carcinoma skeletal metastases: cross-talk between tumor and bone. Cancer Metastasis Rev 20(3–4):333–349

    Article  CAS  PubMed  Google Scholar 

  18. Yang X, Karsenty G (2002) Transcription factors in bone: developmental and pathological aspects. Trends Mol Med 8(7):340–345

    Article  CAS  PubMed  Google Scholar 

  19. Taube T, Elomaa I, Blomqvist C, Beneton MN, Kanis JA (1994) Histomorphometric evidence for osteoclast-mediated bone resorption in metastatic breast cancer. Bone 15(2):161–166

    Article  CAS  PubMed  Google Scholar 

  20. Southby J, Kissin MW, Danks JA, Hayman JA, Moseley JM, Henderson MA, Bennett RC, Martin TJ (1990) Immunohistochemical localization of parathyroid hormone-related protein in human breast cancer. Cancer Res 50(23):7710–7716

    CAS  PubMed  Google Scholar 

  21. Tsuchimochi M, Kameta A, Sue M, Katagiri M (2005) Immunohistochemical localization of parathyroid hormone-related protein (PTHrP) and serum PTHrP in normocalcemic patients with oral squamous cell carcinoma. Odontology 93(1):61–71. https://doi.org/10.1007/s10266-005-0049-6

    Article  CAS  PubMed  Google Scholar 

  22. Johnson RW, Nguyen MP, Padalecki SS, Grubbs BG, Merkel AR, Oyajobi BO, Matrisian LM, Mundy GR, Sterling JA (2011) TGF-beta promotion of Gli2-induced expression of parathyroid hormone-related protein, an important osteolytic factor in bone metastasis, is independent of canonical Hedgehog signaling. Cancer Res 71(3):822–831. https://doi.org/10.1158/0008-5472.CAN-10-2993

    Article  CAS  PubMed  Google Scholar 

  23. David Roodman G, Silbermann R (2015) Mechanisms of osteolytic and osteoblastic skeletal lesions. Bonekey Rep 4:753. https://doi.org/10.1038/bonekey.2015.122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lewis CE, Pollard JW (2006) Distinct role of macrophages in different tumor microenvironments. Cancer Res 66(2):605–612. https://doi.org/10.1158/0008-5472.CAN-05-4005

    Article  CAS  PubMed  Google Scholar 

  25. Mundy GR (2002) Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer 2(8):584–593. https://doi.org/10.1038/nrc867

    Article  CAS  PubMed  Google Scholar 

  26. Coleman R, Body JJ, Aapro M, Hadji P, Herrstedt J, Group EGW (2014) Bone health in cancer patients: ESMO clinical practice guidelines. Ann Oncol 25(Suppl 3):iii124–iii137. https://doi.org/10.1093/annonc/mdu103

    Article  Google Scholar 

  27. Papotti M, Kalebic T, Volante M, Chiusa L, Bacillo E, Cappia S, Lausi P, Novello S, Borasio P, Scagliotti GV (2006) Bone sialoprotein is predictive of bone metastases in resectable non-small-cell lung cancer: a retrospective case-control study. J Clin Oncol 24(30):4818–4824. https://doi.org/10.1200/JCO.2006.06.1952

    Article  CAS  PubMed  Google Scholar 

  28. Guise TA, Mundy GR (1998) Cancer and bone. Endocr Rev 19(1):18–54. https://doi.org/10.1210/edrv.19.1.0323

    Article  CAS  PubMed  Google Scholar 

  29. Weilbaecher KN, Guise TA, McCauley LK (2011) Cancer to bone: a fatal attraction. Nat Rev Cancer 11(6):411–425. https://doi.org/10.1038/nrc3055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Guise TA, Yin JJ, Taylor SD, Kumagai Y, Dallas M, Boyce BF, Yoneda T, Mundy GR (1996) Evidence for a causal role of parathyroid hormone-related protein in the pathogenesis of human breast cancer-mediated osteolysis. J Clin Invest 98(7):1544–1549. https://doi.org/10.1172/JCI118947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang H, Yu C, Gao X, Welte T, Muscarella AM, Tian L, Zhao H, Zhao Z, Du S, Tao J, Lee B, Westbrook TF, Wong ST, Jin X, Rosen JM, Osborne CK, Zhang XH (2015) The osteogenic niche promotes early-stage bone colonization of disseminated breast cancer cells. Cancer Cell 27(2):193–210. https://doi.org/10.1016/j.ccell.2014.11.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Taichman RS, Cooper C, Keller ET, Pienta KJ, Taichman NS, McCauley LK (2002) Use of the stromal cell-derived factor-1/CXCR4 pathway in prostate cancer metastasis to bone. Cancer Res 62(6):1832–1837

    CAS  PubMed  Google Scholar 

  33. Sun X, Cheng G, Hao M, Zheng J, Zhou X, Zhang J, Taichman RS, Pienta KJ, Wang J (2010) CXCL12/CXCR4/CXCR7 chemokine axis and cancer progression. Cancer Metastasis Rev 29(4):709–722. https://doi.org/10.1007/s10555-010-9256-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jung Y, Wang J, Song J, Shiozawa Y, Wang J, Havens A, Wang Z, Sun YX, Emerson SG, Krebsbach PH, Taichman RS (2007) Annexin II expressed by osteoblasts and endothelial cells regulates stem cell adhesion, homing, and engraftment following transplantation. Blood 110(1):82–90. https://doi.org/10.1182/blood-2006-05-021352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jung Y, Shiozawa Y, Wang J, McGregor N, Dai J, Park SI, Berry JE, Havens AM, Joseph J, Kim JK, Patel L, Carmeliet P, Daignault S, Keller ET, McCauley LK, Pienta KJ, Taichman RS (2012) Prevalence of prostate cancer metastases after intravenous inoculation provides clues into the molecular basis of dormancy in the bone marrow microenvironment. Neoplasia 14(5):429–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jung Y, Shiozawa Y, Wang J, Patel LR, Havens AM, Song J, Krebsbach PH, Roodman GD, Taichman RS (2011) Annexin-2 is a regulator of stromal cell-derived factor-1/CXCL12 function in the hematopoietic stem cell endosteal niche. Exp Hematol 39(2):151–166. https://doi.org/10.1016/j.exphem.2010.11.007

    Article  CAS  PubMed  Google Scholar 

  37. Park SI, Lee C, Sadler WD, Koh AJ, Jones J, Seo JW, Soki FN, Cho SW, Daignault SD, McCauley LK (2013) Parathyroid hormone-related protein drives a CD11b+Gr1+ cell-mediated positive feedback loop to support prostate cancer growth. Cancer Res 73(22):6574–6583. https://doi.org/10.1158/0008-5472.CAN-12-4692

    Article  CAS  PubMed  Google Scholar 

  38. Akeno N, Robins J, Zhang M, Czyzyk-Krzeska MF, Clemens TL (2002) Induction of vascular endothelial growth factor by IGF-I in osteoblast-like cells is mediated by the PI3K signaling pathway through the hypoxia-inducible factor-2alpha. Endocrinology 143(2):420–425. https://doi.org/10.1210/endo.143.2.8639

    Article  CAS  PubMed  Google Scholar 

  39. Kim JM, Shin HI, Cha SS, Lee CS, Hong BS, Lim S, Jang HJ, Kim J, Yang YR, Kim YH, Yun S, Rijal G, Lee-Kwon W, Seo JK, Gho YS, Ryu SH, Hur EM, Suh PG (2012) DJ-1 promotes angiogenesis and osteogenesis by activating FGF receptor-1 signaling. Nat Commun 3:1296. https://doi.org/10.1038/ncomms2313

    Article  CAS  PubMed  Google Scholar 

  40. Boyce BF, Schwarz EM, Xing L (2006) Osteoclast precursors: cytokine-stimulated immunomodulators of inflammatory bone disease. Curr Opin Rheumatol 18(4):427–432. https://doi.org/10.1097/01.bor.0000231913.32364.32

    Article  CAS  PubMed  Google Scholar 

  41. Glass DA 2nd, Bialek P, Ahn JD, Starbuck M, Patel MS, Clevers H, Taketo MM, Long F, McMahon AP, Lang RA, Karsenty G (2005) Canonical Wnt signaling in differentiated osteoblasts controls osteoclast differentiation. Dev Cell 8(5):751–764. https://doi.org/10.1016/j.devcel.2005.02.017

    Article  CAS  PubMed  Google Scholar 

  42. Roodman GD (2004) Mechanisms of bone metastasis. N Engl J Med 350(16):1655–1664. https://doi.org/10.1056/NEJMra030831

    Article  CAS  PubMed  Google Scholar 

  43. Crockett JC, Rogers MJ, Coxon FP, Hocking LJ, Helfrich MH (2011) Bone remodelling at a glance. J Cell Sci 124(Pt 7):991–998. https://doi.org/10.1242/jcs.063032

    Article  CAS  PubMed  Google Scholar 

  44. Augsten M (2014) Cancer-associated fibroblasts as another polarized cell type of the tumor microenvironment. Front Oncol 4:62. https://doi.org/10.3389/fonc.2014.00062

    Article  PubMed  PubMed Central  Google Scholar 

  45. Duda DG, Duyverman AM, Kohno M, Snuderl M, Steller EJ, Fukumura D, Jain RK (2010) Malignant cells facilitate lung metastasis by bringing their own soil. Proc Natl Acad Sci U S A 107(50):21677–21682. https://doi.org/10.1073/pnas.1016234107

    Article  PubMed  PubMed Central  Google Scholar 

  46. Zhou JZ, Riquelme MA, Gao X, Ellies LG, Sun LZ, Jiang JX (2015) Differential impact of adenosine nucleotides released by osteocytes on breast cancer growth and bone metastasis. Oncogene 34(14):1831–1842. https://doi.org/10.1038/onc.2014.113

    Article  CAS  PubMed  Google Scholar 

  47. Bergfeld SA, DeClerck YA (2010) Bone marrow-derived mesenchymal stem cells and the tumor microenvironment. Cancer Metastasis Rev 29(2):249–261. https://doi.org/10.1007/s10555-010-9222-7

    Article  PubMed  Google Scholar 

  48. Calvo F, Ege N, Grande-Garcia A, Hooper S, Jenkins RP, Chaudhry SI, Harrington K, Williamson P, Moeendarbary E, Charras G, Sahai E (2013) Mechanotransduction and YAP-dependent matrix remodelling is required for the generation and maintenance of cancer-associated fibroblasts. Nat Cell Biol 15(6):637–646. https://doi.org/10.1038/ncb2756

    Article  CAS  PubMed  Google Scholar 

  49. Harper J, Sainson RC (2014) Regulation of the anti-tumour immune response by cancer-associated fibroblasts. Semin Cancer Biol 25:69–77. https://doi.org/10.1016/j.semcancer.2013.12.005

    Article  CAS  PubMed  Google Scholar 

  50. Bergfeld SA, Blavier L, DeClerck YA (2014) Bone marrow-derived mesenchymal stromal cells promote survival and drug resistance in tumor cells. Mol Cancer Ther 13(4):962–975. https://doi.org/10.1158/1535-7163.MCT-13-0400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zitvogel L, Kroemer G (2015) Cancer: antibodies regulate antitumour immunity. Nature 521(7550):35–37. https://doi.org/10.1038/nature14388

    Article  CAS  PubMed  Google Scholar 

  52. Zhang K, Kim S, Cremasco V, Hirbe AC, Collins L, Piwnica-Worms D, Novack DV, Weilbaecher K, Faccio R (2011) CD8+ T cells regulate bone tumor burden independent of osteoclast resorption. Cancer Res 71(14):4799–4808. https://doi.org/10.1158/0008-5472.CAN-10-3922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Thomas DA, Massague J (2005) TGF-beta directly targets cytotoxic T cell functions during tumor evasion of immune surveillance. Cancer Cell 8(5):369–380. https://doi.org/10.1016/j.ccr.2005.10.012

    Article  CAS  PubMed  Google Scholar 

  54. Rajewsky K (1996) Clonal selection and learning in the antibody system. Nature 381(6585):751–758. https://doi.org/10.1038/381751a0

    Article  CAS  PubMed  Google Scholar 

  55. Balkwill F, Montfort A, Capasso M (2013) B regulatory cells in cancer. Trends Immunol 34(4):169–173. https://doi.org/10.1016/j.it.2012.10.007

    Article  CAS  PubMed  Google Scholar 

  56. Shevach EM (2009) Mechanisms of foxp3+ T regulatory cell-mediated suppression. Immunity 30(5):636–645. https://doi.org/10.1016/j.immuni.2009.04.010

    Article  CAS  PubMed  Google Scholar 

  57. Vivier E, Ugolini S, Blaise D, Chabannon C, Brossay L (2012) Targeting natural killer cells and natural killer T cells in cancer. Nat Rev Immunol 12(4):239–252. https://doi.org/10.1038/nri3174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Deng L, Zhou JF, Sellers RS, Li JF, Nguyen AV, Wang Y, Orlofsky A, Liu Q, Hume DA, Pollard JW, Augenlicht L, Lin EY (2010) A novel mouse model of inflammatory bowel disease links mammalian target of rapamycin-dependent hyperproliferation of colonic epithelium to inflammation-associated tumorigenesis. Am J Pathol 176(2):952–967. https://doi.org/10.2353/ajpath.2010.090622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Pollard JW (2008) Macrophages define the invasive microenvironment in breast cancer. J Leukoc Biol 84(3):623–630. https://doi.org/10.1189/jlb.1107762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Qian BZ, Pollard JW (2010) Macrophage diversity enhances tumor progression and metastasis. Cell 141(1):39–51. https://doi.org/10.1016/j.cell.2010.03.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Chang MK, Raggatt LJ, Alexander KA, Kuliwaba JS, Fazzalari NL, Schroder K, Maylin ER, Ripoll VM, Hume DA, Pettit AR (2008) Osteal tissue macrophages are intercalated throughout human and mouse bone lining tissues and regulate osteoblast function in vitro and in vivo. J Immunol 181(2):1232–1244. https://doi.org/10.4049/jimmunol.181.2.1232

    Article  CAS  PubMed  Google Scholar 

  62. Winkler IG, Sims NA, Pettit AR, Barbier V, Nowlan B, Helwani F, Poulton IJ, van Rooijen N, Alexander KA, Raggatt LJ, Levesque JP (2010) Bone marrow macrophages maintain hematopoietic stem cell (HSC) niches and their depletion mobilizes HSCs. Blood 116(23):4815–4828. https://doi.org/10.1182/blood-2009-11-253534

    Article  CAS  PubMed  Google Scholar 

  63. Alexander KA, Chang MK, Maylin ER, Kohler T, Muller R, Wu AC, Van Rooijen N, Sweet MJ, Hume DA, Raggatt LJ, Pettit AR (2011) Osteal macrophages promote in vivo intramembranous bone healing in a mouse tibial injury model. J Bone Miner Res 26(7):1517–1532. https://doi.org/10.1002/jbmr.354

    Article  CAS  PubMed  Google Scholar 

  64. Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420(6917):860–867. https://doi.org/10.1038/nature01322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Youn JI, Nagaraj S, Collazo M, Gabrilovich DI (2008) Subsets of myeloid-derived suppressor cells in tumor-bearing mice. J Immunol 181(8):5791–5802. https://doi.org/10.4049/jimmunol.181.8.5791

    Article  CAS  PubMed  Google Scholar 

  66. Movahedi K, Guilliams M, Van den Bossche J, Van den Bergh R, Gysemans C, Beschin A, De Baetselier P, Van Ginderachter JA (2008) Identification of discrete tumor-induced myeloid-derived suppressor cell subpopulations with distinct T cell-suppressive activity. Blood 111(8):4233–4244. https://doi.org/10.1182/blood-2007-07-099226

    Article  CAS  PubMed  Google Scholar 

  67. Huang B, Pan PY, Li Q, Sato AI, Levy DE, Bromberg J, Divino CM, Chen SH (2006) Gr-1+CD115+ immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell anergy in tumor-bearing host. Cancer Res 66(2):1123–1131. https://doi.org/10.1158/0008-5472.CAN-05-1299

    Article  CAS  PubMed  Google Scholar 

  68. Elkabets M, Ribeiro VS, Dinarello CA, Ostrand-Rosenberg S, Di Santo JP, Apte RN, Vosshenrich CA (2010) IL-1beta regulates a novel myeloid-derived suppressor cell subset that impairs NK cell development and function. Eur J Immunol 40(12):3347–3357. https://doi.org/10.1002/eji.201041037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Srivastava MK, Sinha P, Clements VK, Rodriguez P, Ostrand-Rosenberg S (2010) Myeloid-derived suppressor cells inhibit T-cell activation by depleting cystine and cysteine. Cancer Res 70(1):68–77. https://doi.org/10.1158/0008-5472.CAN-09-2587

    Article  CAS  PubMed  Google Scholar 

  70. Lindau D, Gielen P, Kroesen M, Wesseling P, Adema GJ (2013) The immunosuppressive tumour network: myeloid-derived suppressor cells, regulatory T cells and natural killer T cells. Immunology 138(2):105–115. https://doi.org/10.1111/imm.12036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Marvel D, Gabrilovich DI (2015) Myeloid-derived suppressor cells in the tumor microenvironment: expect the unexpected. J Clin Invest 125(9):3356–3364. https://doi.org/10.1172/JCI80005

    Article  PubMed  PubMed Central  Google Scholar 

  72. Pasquier E, Ciccolini J, Carre M, Giacometti S, Fanciullino R, Pouchy C, Montero MP, Serdjebi C, Kavallaris M, Andre N (2011) Propranolol potentiates the anti-angiogenic effects and anti-tumor efficacy of chemotherapy agents: implication in breast cancer treatment. Oncotarget 2(10):797–809. https://doi.org/10.18632/oncotarget.343

    Article  PubMed  PubMed Central  Google Scholar 

  73. Ji Y, Chen S, Li K, Xiao X, Zheng S, Xu T (2013) The role of beta-adrenergic receptor signaling in the proliferation of hemangioma-derived endothelial cells. Cell Div 8(1):1. https://doi.org/10.1186/1747-1028-8-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Thaker PH, Han LY, Kamat AA, Arevalo JM, Takahashi R, Lu C, Jennings NB, Armaiz-Pena G, Bankson JA, Ravoori M, Merritt WM, Lin YG, Mangala LS, Kim TJ, Coleman RL, Landen CN, Li Y, Felix E, Sanguino AM, Newman RA, Lloyd M, Gershenson DM, Kundra V, Lopez-Berestein G, Lutgendorf SK, Cole SW, Sood AK (2006) Chronic stress promotes tumor growth and angiogenesis in a mouse model of ovarian carcinoma. Nat Med 12(8):939–944. https://doi.org/10.1038/nm1447

    Article  CAS  PubMed  Google Scholar 

  75. Thaker PH, Sood AK (2008) Neuroendocrine influences on cancer biology. Semin Cancer Biol 18(3):164–170. https://doi.org/10.1016/j.semcancer.2007.12.005

    Article  CAS  PubMed  Google Scholar 

  76. Elefteriou F, Ahn JD, Takeda S, Starbuck M, Yang X, Liu X, Kondo H, Richards WG, Bannon TW, Noda M, Clement K, Vaisse C, Karsenty G (2005) Leptin regulation of bone resorption by the sympathetic nervous system and CART. Nature 434(7032):514–520. https://doi.org/10.1038/nature03398

    Article  CAS  PubMed  Google Scholar 

  77. Campbell JP, Karolak MR, Ma Y, Perrien DS, Masood-Campbell SK, Penner NL, Munoz SA, Zijlstra A, Yang X, Sterling JA, Elefteriou F (2012) Stimulation of host bone marrow stromal cells by sympathetic nerves promotes breast cancer bone metastasis in mice. PLoS Biol 10(7):e1001363. https://doi.org/10.1371/journal.pbio.1001363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Chavez-Macgregor M, Aviles-Salas A, Green D, Fuentes-Alburo A, Gomez-Ruiz C, Aguayo A (2005) Angiogenesis in the bone marrow of patients with breast cancer. Clin Cancer Res 11(15):5396–5400. https://doi.org/10.1158/1078-0432.CCR-04-2420

    Article  CAS  PubMed  Google Scholar 

  79. Kopp HG, Avecilla ST, Hooper AT, Rafii S (2005) The bone marrow vascular niche: home of HSC differentiation and mobilization. Physiology (Bethesda) 20:349–356. https://doi.org/10.1152/physiol.00025.2005

    Article  CAS  Google Scholar 

  80. Russell RG (2011) Bisphosphonates: the first 40 years. Bone 49(1):2–19. https://doi.org/10.1016/j.bone.2011.04.022

    Article  CAS  PubMed  Google Scholar 

  81. McCloskey EV, MacLennan IC, Drayson MT, Chapman C, Dunn J, Kanis JA (1998) A randomized trial of the effect of clodronate on skeletal morbidity in multiple myeloma MRC Working Party on Leukaemia in Adults. Br J Haematol 100(2):317–325

    Article  CAS  PubMed  Google Scholar 

  82. Powles T, Paterson S, Kanis JA, McCloskey E, Ashley S, Tidy A, Rosenqvist K, Smith I, Ottestad L, Legault S, Pajunen M, Nevantaus A, Mannisto E, Suovuori A, Atula S, Nevalainen J, Pylkkanen L (2002) Randomized, placebo-controlled trial of clodronate in patients with primary operable breast cancer. J Clin Oncol 20(15):3219–3224. https://doi.org/10.1200/JCO.2002.11.080

    Article  CAS  PubMed  Google Scholar 

  83. Saad F, Gleason DM, Murray R, Tchekmedyian S, Venner P, Lacombe L, Chin JL, Vinholes JJ, Goas JA, Chen B, Zoledronic Acid Prostate Cancer Study G (2002) A randomized, placebo-controlled trial of zoledronic acid in patients with hormone-refractory metastatic prostate carcinoma. J Natl Cancer Inst 94(19):1458–1468. https://doi.org/10.1093/jnci/94.19.1458

    Article  CAS  PubMed  Google Scholar 

  84. Rosen LS, Gordon D, Tchekmedyian S, Yanagihara R, Hirsh V, Krzakowski M, Pawlicki M, de Souza P, Zheng M, Urbanowitz G, Reitsma D, Seaman JJ (2003) Zoledronic acid versus placebo in the treatment of skeletal metastases in patients with lung cancer and other solid tumors: a phase III, double-blind, randomized trial–the Zoledronic Acid Lung Cancer and Other Solid Tumors Study Group. J Clin Oncol 21(16):3150–3157. https://doi.org/10.1200/JCO.2003.04.105

    Article  CAS  PubMed  Google Scholar 

  85. Rosen LS, Gordon D, Kaminski M, Howell A, Belch A, Mackey J, Apffelstaedt J, Hussein MA, Coleman RE, Reitsma DJ, Chen BL, Seaman JJ (2003) Long-term efficacy and safety of zoledronic acid compared with pamidronate disodium in the treatment of skeletal complications in patients with advanced multiple myeloma or breast carcinoma: a randomized, double-blind, multicenter, comparative trial. Cancer 98(8):1735–1744. https://doi.org/10.1002/cncr.11701

    Article  CAS  PubMed  Google Scholar 

  86. Hillner BE, Ingle JN, Chlebowski RT, Gralow J, Yee GC, Janjan NA, Cauley JA, Blumenstein BA, Albain KS, Lipton A, Brown S, American Society of Clinical O (2003) American Society of Clinical Oncology 2003 update on the role of bisphosphonates and bone health issues in women with breast cancer. J Clin Oncol 21(21):4042–4057. https://doi.org/10.1200/JCO.2003.08.017

    Article  CAS  PubMed  Google Scholar 

  87. Body JJ, Bartl R, Burckhardt P, Delmas PD, Diel IJ, Fleisch H, Kanis JA, Kyle RA, Mundy GR, Paterson AH, Rubens RD (1998) Current use of bisphosphonates in oncology. International Bone and Cancer Study Group. J Clin Oncol 16(12):3890–3899. https://doi.org/10.1200/JCO.1998.16.12.3890

    Article  CAS  PubMed  Google Scholar 

  88. Coleman RE, Seaman JJ (2001) The role of zoledronic acid in cancer: clinical studies in the treatment and prevention of bone metastases. Semin Oncol 28(2 Suppl 6):11–16

    Article  CAS  PubMed  Google Scholar 

  89. Guenther A, Gordon S, Tiemann M, Burger R, Bakker F, Green JR, Baum W, Roelofs AJ, Rogers MJ, Gramatzki M (2010) The bisphosphonate zoledronic acid has antimyeloma activity in vivo by inhibition of protein prenylation. Int J Cancer 126(1):239–246. https://doi.org/10.1002/ijc.24758

    Article  CAS  PubMed  Google Scholar 

  90. Chlebowski RT, Chen Z, Cauley JA, Anderson G, Rodabough RJ, McTiernan A, Lane DS, Manson JE, Snetselaar L, Yasmeen S, O'Sullivan MJ, Safford M, Hendrix SL, Wallace RB (2010) Oral bisphosphonate use and breast cancer incidence in postmenopausal women. J Clin Oncol 28(22):3582–3590. https://doi.org/10.1200/JCO.2010.28.2095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Rennert G, Pinchev M, Rennert HS, Gruber SB (2011) Use of bisphosphonates and reduced risk of colorectal cancer. J Clin Oncol 29(9):1146–1150. https://doi.org/10.1200/JCO.2010.33.7485

    Article  PubMed  PubMed Central  Google Scholar 

  92. Rennert G, Pinchev M, Rennert HS (2010) Use of bisphosphonates and risk of postmenopausal breast cancer. J Clin Oncol 28(22):3577–3581. https://doi.org/10.1200/JCO.2010.28.1113

    Article  CAS  PubMed  Google Scholar 

  93. Steger GG, Bartsch R (2011) Denosumab for the treatment of bone metastases in breast cancer: evidence and opinion. Ther Adv Med Oncol 3(5):233–243. https://doi.org/10.1177/1758834011412656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Yee AJ, Raje NS (2012) Denosumab, a RANK ligand inhibitor, for the management of bone loss in cancer patients. Clin Interv Aging 7:331–338. https://doi.org/10.2147/CIA.S14566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Migliorati CA, Epstein JB, Abt E, Berenson JR (2011) Osteonecrosis of the jaw and bisphosphonates in cancer: a narrative review. Nat Rev Endocrinol 7(1):34–42. https://doi.org/10.1038/nrendo.2010.195

    Article  CAS  PubMed  Google Scholar 

  96. Baron R, Ferrari S, Russell RG (2011) Denosumab and bisphosphonates: different mechanisms of action and effects. Bone 48(4):677–692. https://doi.org/10.1016/j.bone.2010.11.020

    Article  CAS  PubMed  Google Scholar 

  97. Ross JR, Saunders Y, Edmonds PM, Patel S, Broadley KE, Johnston SR (2003) Systematic review of role of bisphosphonates on skeletal morbidity in metastatic cancer. BMJ 327(7413):469. https://doi.org/10.1136/bmj.327.7413.469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Lutz S, Berk L, Chang E, Chow E, Hahn C, Hoskin P, Howell D, Konski A, Kachnic L, Lo S, Sahgal A, Silverman L, von Gunten C, Mendel E, Vassil A, Bruner DW, Hartsell W, American Society for Radiation O (2011) Palliative radiotherapy for bone metastases: an ASTRO evidence-based guideline. Int J Radiat Oncol Biol Phys 79(4):965–976. https://doi.org/10.1016/j.ijrobp.2010.11.026

    Article  PubMed  Google Scholar 

  99. Chow E, Harris K, Fan G, Tsao M, Sze WM (2007) Palliative radiotherapy trials for bone metastases: a systematic review. J Clin Oncol 25(11):1423–1436. https://doi.org/10.1200/JCO.2006.09.5281

    Article  PubMed  Google Scholar 

  100. Maisano R, Pergolizzi S, Cascinu S (2001) Novel therapeutic approaches to cancer patients with bone metastasis. Crit Rev Oncol Hematol 40(3):239–250

    Article  CAS  PubMed  Google Scholar 

  101. Hoskin PJ, Stratford MR, Folkes LK, Regan J, Yarnold JR (2000) Effect of local radiotherapy for bone pain on urinary markers of osteoclast activity. Lancet 355(9213):1428–1429

    Article  CAS  PubMed  Google Scholar 

  102. Fairchild A, Barnes E, Ghosh S, Ben-Josef E, Roos D, Hartsell W, Holt T, Wu J, Janjan N, Chow E (2009) International patterns of practice in palliative radiotherapy for painful bone metastases: evidence-based practice? Int J Radiat Oncol Biol Phys 75(5):1501–1510. https://doi.org/10.1016/j.ijrobp.2008.12.084

    Article  PubMed  Google Scholar 

  103. Jhaveri P, Teh BS, Bloch C, Amato R, Butler EB, Paulino AC (2008) Stereotactic body radiotherapy in the management of painful bone metastases. Oncology (Williston Park) 22(7):782–788 (Discussion 788–789, 796–787)

    Google Scholar 

  104. Sohn S, Chung CK (2012) The role of stereotactic radiosurgery in metastasis to the spine. J Korean Neurosurg Soc 51(1):1–7. https://doi.org/10.3340/jkns.2012.51.1.1

    Article  PubMed  PubMed Central  Google Scholar 

  105. Bhattacharya IS, Hoskin PJ (2015) Stereotactic body radiotherapy for spinal and bone metastases. Clin Oncol (R Coll Radiol) 27(5):298–306. https://doi.org/10.1016/j.clon.2015.01.030

    Article  CAS  Google Scholar 

  106. De Felice F, Piccioli A, Musio D, Tombolini V (2017) The role of radiation therapy in bone metastases management. Oncotarget 8(15):25691–25699. https://doi.org/10.18632/oncotarget.14823

    Article  PubMed  PubMed Central  Google Scholar 

  107. Joaquim AF, Ghizoni E, Tedeschi H, Pereira EB, Giacomini LA (2013) Stereotactic radiosurgery for spinal metastases: a literature review. Einstein (Sao Paulo) 11(2):247–255

    Article  Google Scholar 

  108. Cihan YB (2016) Stereotactic body radiation therapy for treatment of spinal bone metastasis. Asian Pac J Cancer Prev 17(3):937–938

    Article  PubMed  Google Scholar 

  109. Krylov VV, Kochetova TY, Voloznev LV (2015) Radionuclide therapy for bone metastases: new opportunities. Vopr Onkol 61(1):14–19

    CAS  PubMed  Google Scholar 

  110. Pecher C (1942) Biological investigations with radioactive calcium and strontium: preliminary report on the use of radioactive strontium in the treatment of metastatic bone cancer. Univ Calif Pub Pharmacol 2:117–149

    CAS  Google Scholar 

  111. Fuster D, Herranz D, Vidal-Sicart S, Munoz M, Conill C, Mateos JJ, Martin F, Pons F (2000) Usefulness of strontium-89 for bone pain palliation in metastatic breast cancer patients. Nucl Med Commun 21(7):623–626

    Article  CAS  PubMed  Google Scholar 

  112. Christensen MH, Petersen LJ (2012) Radionuclide treatment of painful bone metastases in patients with breast cancer: a systematic review. Cancer Treat Rev 38(2):164–171. https://doi.org/10.1016/j.ctrv.2011.05.008

    Article  CAS  PubMed  Google Scholar 

  113. Fettich J, Padhy A, Nair N et al (2003) Comparative clinical efficacy and safety of phosphorus-32 and strontium-89 in the palliative treatment of metastatic bone pain: results of an IAEA coordinated research project. World J Nucl Med 2:226–231

    Google Scholar 

  114. Lau WF, Hicks R, Binns D (2001) Differential effects of bisphosphonate on Paget's disease and metastatic prostatic carcinoma-bone scan findings. Clin Nucl Med 26(4):347–348. https://doi.org/10.1097/00003072-200104000-00016

    Article  CAS  PubMed  Google Scholar 

  115. Gupta N, Devgan A, Bansal I, Olsavsky TD, Li S, Abdelbaki A, Kumar Y (2017) Usefulness of radium-223 in patients with bone metastases. Proc (Bayl Univ Med Cent) 30(4):424–426

    Article  Google Scholar 

  116. Sartor O, Hoskin P, Bruland OS (2013) Targeted radio-nuclide therapy of skeletal metastases. Cancer Treat Rev 39(1):18–26. https://doi.org/10.1016/j.ctrv.2012.03.006

    Article  CAS  PubMed  Google Scholar 

  117. Bruland OS, Nilsson S, Fisher DR, Larsen RH (6257s) High-linear energy transfer irradiation targeted to skeletal metastases by the alpha-emitter 223Ra: adjuvant or alternative to conventional modalities? Clin Cancer Res 12(20 Pt 2):6250s–6257s. https://doi.org/10.1158/1078-0432.CCR-06-0841

    Article  CAS  PubMed  Google Scholar 

  118. Baidoo KE, Yong K, Brechbiel MW (2013) Molecular pathways: targeted alpha-particle radiation therapy. Clin Cancer Res 19(3):530–537. https://doi.org/10.1158/1078-0432.CCR-12-0298

    Article  CAS  PubMed  Google Scholar 

  119. Saad F, Carles J, Gillessen S, Heidenreich A, Heinrich D, Gratt J, Levy J, Miller K, Nilsson S, Petrenciuc O, Tucci M, Wirth M, Federhofer J, O'Sullivan JM, Radium-223 International Early Access Program I (2016) Radium-223 and concomitant therapies in patients with metastatic castration-resistant prostate cancer: an international, early access, open-label, single-arm phase 3b trial. Lancet Oncol 17(9):1306–1316. https://doi.org/10.1016/S1470-2045(16)30173-5

    Article  CAS  PubMed  Google Scholar 

  120. Nguyen NC, Shah M, Appleman LJ, Parikh R, Mountz JM (2016) Radium-223 therapy for patients with metastatic castrate-resistant prostate cancer: an update on literature with case presentation. Int J Mol Imaging 2016:2568031. https://doi.org/10.1155/2016/2568031

    Article  PubMed  PubMed Central  Google Scholar 

  121. Nilsson S (2016) Radium-223 therapy of bone metastases in prostate cancer. Semin Nucl Med 46(6):544–556. https://doi.org/10.1053/j.semnuclmed.2016.07.007

    Article  PubMed  Google Scholar 

  122. Ward WG, Holsenbeck S, Dorey FJ, Spang J, Howe D (2003) Metastatic disease of the femur: surgical treatment. Clin Orthop Relat Res 415(Suppl):S230–S244. https://doi.org/10.1097/01.blo.0000093849.72468.82

    Article  Google Scholar 

  123. Katzer A, Meenen NM, Grabbe F, Rueger JM (2002) Surgery of skeletal metastases. Arch Orthop Trauma Surg 122(5):251–258. https://doi.org/10.1007/s00402-001-0359-2

    Article  PubMed  Google Scholar 

  124. Mirels H (1989) Metastatic disease in long bones. A proposed scoring system for diagnosing impending pathologic fractures. Clin Orthop Relat Res 249:256–264

    Google Scholar 

  125. Snyder BD, Hauser-Kara DA, Hipp JA, Zurakowski D, Hecht AC, Gebhardt MC (2006) Predicting fracture through benign skeletal lesions with quantitative computed tomography. J Bone Joint Surg Am 88(1):55–70. https://doi.org/10.2106/JBJS.D.02600

    Article  PubMed  Google Scholar 

  126. Cheung FH (2014) The practicing orthopedic surgeon's guide to managing long bone metastases. Orthop Clin North Am 45(1):109–119. https://doi.org/10.1016/j.ocl.2013.09.003

    Article  PubMed  Google Scholar 

  127. Goldman L, Caldera DL, Nussbaum SR, Southwick FS, Krogstad D, Murray B, Burke DS, O'Malley TA, Goroll AH, Caplan CH, Nolan J, Carabello B, Slater EE (1977) Multifactorial index of cardiac risk in noncardiac surgical procedures. N Engl J Med 297(16):845–850. https://doi.org/10.1056/NEJM197710202971601

    Article  CAS  PubMed  Google Scholar 

  128. Nathan SS, Healey JH, Mellano D, Hoang B, Lewis I, Morris CD, Athanasian EA, Boland PJ (2005) Survival in patients operated on for pathologic fracture: implications for end-of-life orthopedic care. J Clin Oncol 23(25):6072–6082. https://doi.org/10.1200/JCO.2005.08.104

    Article  PubMed  Google Scholar 

  129. Moynagh MR, Kurup AN, Callstrom MR (2018) Thermal ablation of bone metastases. Semin Intervent Radiol 35(4):299–308. https://doi.org/10.1055/s-0038-1673422

    Article  PubMed  PubMed Central  Google Scholar 

  130. Gennaro N, Sconfienza LM, Ambrogi F, Boveri S, Lanza E (2019) Thermal ablation to relieve pain from metastatic bone disease: a systematic review. Skeletal Radiol. https://doi.org/10.1007/s00256-018-3140-0

    Article  PubMed  Google Scholar 

  131. Dupuy DE, Liu D, Hartfeil D, Hanna L, Blume JD, Ahrar K, Lopez R, Safran H, DiPetrillo T (2010) Percutaneous radiofrequency ablation of painful osseous metastases: a multicenter American College of Radiology Imaging Network trial. Cancer 116(4):989–997. https://doi.org/10.1002/cncr.24837

    Article  PubMed  Google Scholar 

  132. Goetz MP, Callstrom MR, Charboneau JW, Farrell MA, Maus TP, Welch TJ, Wong GY, Sloan JA, Novotny PJ, Petersen IA, Beres RA, Regge D, Capanna R, Saker MB, Gronemeyer DH, Gevargez A, Ahrar K, Choti MA, de Baere TJ, Rubin J (2004) Percutaneous image-guided radiofrequency ablation of painful metastases involving bone: a multicenter study. J Clin Oncol 22(2):300–306. https://doi.org/10.1200/JCO.2004.03.097

    Article  PubMed  Google Scholar 

  133. Callstrom MR, Atwell TD, Charboneau JW, Farrell MA, Goetz MP, Rubin J, Sloan JA, Novotny PJ, Welch TJ, Maus TP, Wong GY, Brown KJ (2006) Painful metastases involving bone: percutaneous image-guided cryoablation–prospective trial interim analysis. Radiology 241(2):572–580. https://doi.org/10.1148/radiol.2412051247

    Article  PubMed  Google Scholar 

  134. Callstrom MR, Dupuy DE, Solomon SB, Beres RA, Littrup PJ, Davis KW, Paz-Fumagalli R, Hoffman C, Atwell TD, Charboneau JW, Schmit GD, Goetz MP, Rubin J, Brown KJ, Novotny PJ, Sloan JA (2013) Percutaneous image-guided cryoablation of painful metastases involving bone: multicenter trial. Cancer 119(5):1033–1041. https://doi.org/10.1002/cncr.27793

    Article  PubMed  Google Scholar 

  135. Camacho A, Jerez S (2019) Bone metastasis treatment modeling via optimal control. J Math Biol 78(1–2):497–526. https://doi.org/10.1007/s00285-018-1281-3

    Article  PubMed  Google Scholar 

Download references

Funding

No external source of funding was used.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filippo Migliorini.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

For this type of study informed consent is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Migliorini, F., Maffulli, N., Trivellas, A. et al. Bone metastases: a comprehensive review of the literature. Mol Biol Rep 47, 6337–6345 (2020). https://doi.org/10.1007/s11033-020-05684-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05684-0

Keywords

Navigation