Skip to main content

Advertisement

Log in

Bone metastasis treatment modeling via optimal control

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

Metastatic disease is a lethal stage of cancer progression. It is characterized by the spread of aberrant cells from a primary tumor to distant tissues like the bone. Several treatments are used to deal with bone metastases formation, but they are palliative since the disease is considered incurable. Computational and mathematical models are used to understand the underlying mechanisms of how bone metastasis evolves. In this way, new therapies aiming to reduce or eliminate the metastatic burden in the bone tissue may be proposed. We present an optimal control approach to analyze some common treatments for bone metastasis. In particular, we focus on denosumab treatment, an anti-resorptive therapy, and radiotherapy treatment which has a cell killing action. We base our work in a variant of an existing model introduced by Komarova. The new model incorporates a logistic equation in order to describe the bone metastasis evolution. We provide proofs of existence and uniqueness of solutions to the corresponding optimal control problems for each treatment. Moreover, we present some numerical simulations to analyze the effectiveness of both treatments when different interactions between cancer and bone cells occur. A discussion of the obtained results is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Araujo A, Cook LM, Lynch CC, Basanta D (2014) An integrated computational model of the bone microenvironment in bone-metastatic prostate cancer. Cancer Res 74(9):2391–2401

    Article  Google Scholar 

  • Ayati BP, Edwards CM, Webb GF, Wikswo JP (2010) A mathematical model of bone remodeling dynamics for normal bone cell populations and myeloma bone disease. Biol Direct 5(1):28

    Article  Google Scholar 

  • Barker HE, Paget JT, Khan AA, Harrington KJ (2015) The tumour microenvironment after radiotherapy: mechanisms of resistance and recurrence. Nat Rev Cancer 15(7):409

    Article  Google Scholar 

  • Bara O, Djouadi SM, Day JD, Lenhart S (2017) Immune therapeutic strategies using optimal controls with L1- and L2- type objectives. Math Biosci 290:1339–1351

    Article  MATH  Google Scholar 

  • Brenner DJ (2008) The linear-quadratic model is an appropriate methodology for determining isoeffective doses at large doses per fraction. Semin Radiat Oncol 8(4):234–239

    Article  Google Scholar 

  • Chow E, van der Linden YM, Roos D, Hartsell WF, Hoskin P, Wu JSY, Wong RKS (2016) Single versus multiple fractions of repeat radiation for painful bone metastases: a randomised, controlled, non-inferiority trial. Lancet Oncol 15(2):164–171

    Article  Google Scholar 

  • Coelho RM, Lemos JM, Alho I, Valério D, Ferreira AR, Costa L, Vinga S (2016) Dynamic modeling of bone metastasis, microenvironment and therapy. J Theor Biol 391:1–12

    Article  MATH  Google Scholar 

  • De Pillis LG, Radunskaya A (2003) The dynamics of an optimally controlled tumor model: a case study. Math Comput Model 37(11):1221–1244

    Article  MATH  Google Scholar 

  • Dingli D, Chalub FACC, Santos FC, Van Segbroeck S, Pacheco JM (2009) Cancer phenotype as the outcome of an evolutionary game between normal and malignant cells. Br J Cancer 101(7):1130–1136

    Article  Google Scholar 

  • Farhat A, Jiang D, Cui D, Keller ET, Jackson TL (2017) An integrative model of prostate cancer interaction with the bone microenvironment. Math Biosci 294:1–14

    Article  MathSciNet  MATH  Google Scholar 

  • Fister KR, Lenhart S, McNally JS (1998) Optimizing chemotherapy in an HIV model. Electron J Differ Equ 32:1–12

    MathSciNet  MATH  Google Scholar 

  • Fleming WH, Rishel RW (1975) Deterministic and stochastic optimal control. Springer, New York

    Book  MATH  Google Scholar 

  • Florencio-Silva R, Rodrigues G, Sasso-Cerri E, Simoes MJ, Cerri PS (2015) Biology of bone tissue: structure, function, and factors that influence bone cells. Biomed Res Int 2015:421746

    Article  Google Scholar 

  • Ganesh V, Chan S, Raman S, Chow R, Hoskin P, Lam H, Chow E (2017) A review of patterns of practice and clinical guidelines in the palliative radiation treatment of uncomplicated bone metastases. Radiother Oncol 124(1):38–44

    Article  Google Scholar 

  • Garzón-Alvaradob DA (2012) A mathematical model for describing the metastasis of cancer in bone tissue. Comput Methods Biomech Biomed Eng 15(4):333–346

    Article  Google Scholar 

  • Graham JM, Ayati BP, Ramakrishnan PS, Martin JA (2012) Towards a new spatial representation of bone remodeling. Math Biosci Eng 9(2):281–295

    Article  MathSciNet  MATH  Google Scholar 

  • Jerez S, Chen B (2015) Stability analysis of a Komarova type model for the interactions of osteoblast and osteoclast cells during bone remodeling. Math Biosci 264:29–37

    Article  MathSciNet  MATH  Google Scholar 

  • Jerez S, Camacho A (2018) Bone metastasis modeling based on the interactions between the BMU and tumor cells. J Comput App Math 330:866–876

    Article  MathSciNet  MATH  Google Scholar 

  • Jerez S, Díaz-Infante S, Chen B (2018) Fluctuating periodic solutions and moment boundedness of a stochastic model for the bone remodeling process. Math Biosci 299:153–164

    Article  MathSciNet  MATH  Google Scholar 

  • Juárez P, Fournier PG, Mohammad KS, McKenna RC, Davis HW, Peng XH, Guise TA (2017) Halofuginone inhibits TGF-\(\beta \)/BMP signaling and in combination with zoledronic acid enhances inhibition of breast cancer bone metastasis. Oncotarget 8(49):86447

    Article  Google Scholar 

  • Komarova SV, Smith RJ, Dixon SJ, Sims SM, Wahl LM (2003) Mathematical model predicts a critical role for osteoclast autocrine regulation in the control of bone remodeling. Bone 33(2):206–215

    Article  Google Scholar 

  • Kwakwa KA, Vanderburgh JP, Guelcher SA, Sterling JA (2017) Engineering 3D models of tumors and bone to understand tumor-induced bone disease and improve treatments. Curr Osteoporos Rep 15(4):247–254

    Article  Google Scholar 

  • Lemaire V, Tobin FL, Greller LD, Cho CR, Suva LR (2004) Modeling the interactions between osteoblast and osteoclast activities in bone remodeling. J Theor Biol 229(3):293–309

    Article  MathSciNet  Google Scholar 

  • Lemos JM, Caiado DV, Coelho R, Vinga S (2016) Optimal and receding horizon control of tumor growth in myeloma bone disease. Biomed Signal Process 24:128–134

    Article  Google Scholar 

  • Lenhart S, Workman JT (2007) Optimal control applied to biological models. Chapman & Hall/CRC, Boca Raton

    MATH  Google Scholar 

  • Lipton A, Fizazi K, Stopeck AT, Henry DH, Smith MR (2016) Effect of denosumab versus zoledronic acid in preventing skeletal-related events in patients with bone metastases by baseline characteristics. Eur J Cancer 53:75–83

    Article  Google Scholar 

  • Lukes DL (1982) Differential equations: classical to controlled. Academic Press, New York

    MATH  Google Scholar 

  • Lutz S, Balboni T, Jones J, Lo S, Petit J, Rich SE, Wong R, Hahn C (2017) Palliative radiation therapy for bone metastases: update of an ASTRO evidence-based guideline. Pract Radiat Oncol 7(1):4–12

    Article  Google Scholar 

  • Massagué J, Obenauf AC (2016) Metastatic colonization by circulating tumour cells. Nature 529(7586):298–306

    Article  Google Scholar 

  • McAsey M, Mou L, Han W (2012) Convergence of the forward-backward sweep method in optimal control. Comput Optim Appl 53(1):207–226

    Article  MathSciNet  MATH  Google Scholar 

  • Mundy GR (2002) Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer 2(8):584–593

    Article  Google Scholar 

  • Oest ME, Franken V, Kuchera T, Strauss J, Damron TA (2015) Longterm loss of osteoclasts and unopposed cortical mineral apposition following limited field irradiation. J Orthop Res 33(3):334–342

    Article  Google Scholar 

  • Ottewell PD (2016) The role of osteoblasts in bone metastasis. J Bone Oncol 5(3):124–127

    Article  Google Scholar 

  • Paget S (1889) The distribution of secondary growths in cancer of the breast. Lancet 133(3421):571–573

    Article  Google Scholar 

  • Penninger CL, Patel NM, Niebur GL, Tovar A, Renauda JE (2008) A fully anisotropic hierarchical hybrid cellular automaton algorithm to simulate bone remodeling. Mech Res Commun 35(1–2):32–42

    Article  MATH  Google Scholar 

  • Pivonka P, Zimak J, Smith DW, Gardiner BS, Dunstan CR, Sims NA, Martin TJ, Mundy GR (2008) Model structure and control of bone remodeling: a theoretical study. Bone 43(2):249–263

    Article  Google Scholar 

  • Pontryagin LS, Boltyanskiï VG, Gamkrelidze RV, Mischenko EF (1962) The mathematical theory of optimal processes. Wiley, New York

    Google Scholar 

  • Ross DS, Mehta K, Cabal A (2017) Mathematical model of bone remodeling captures the antiresorptive and anabolic actions of various therapies. Bull Math Biol 79(1):117–142

    Article  MathSciNet  MATH  Google Scholar 

  • Ryser MD, Qu Y, Komarova SV (2012) Osteoprotegerin in bone metastases: mathematical solution to the puzzle. PLoS Comput Biol 8(10):e1002703

    Article  MathSciNet  Google Scholar 

  • Savageau MA (1988) Introduction to S-systems and the underlying power-law formalism. Math Comput Model 11:546–551

    Article  MathSciNet  Google Scholar 

  • Stephenson B, Lanzas C, Lenhart S, Day J (2017) Optimal control of vaccination rate in an epidemiological model of Clostridium difficile transmission. J Math Biol 75(6–7):1693–1713

    Article  MathSciNet  MATH  Google Scholar 

  • Swan GW (1990) Role of optimal control theory in cancer chemotherapy. Math Biosci 101(2):237–284

    Article  MATH  Google Scholar 

  • Theriault RL, Theriault RL (2012) Biology of bone metastases. Cancer Control 19(2):92–101

    Article  MATH  Google Scholar 

  • Tovar A (2004) Bone remodeling as a hybrid cellular automaton optimization process. Ph.D dissertation, University of Notre Dame, Indiana

  • Vakaet LAM-L, Boterberg T (2004) Pain control by ionizing radiation of bone metastasis. Int J Dev Biol 48(5–6):599–606

    Article  Google Scholar 

  • Van Scoy GK, George EL, Asantewaa FO, Kerns L, Saunders MM, Prieto-Langarica A (2017) A cellular automata model of bone formation. Math Biosci 286:58–64

    Article  MathSciNet  MATH  Google Scholar 

  • Wang Y, Pivonka P, Buenzli PR, Smith DW, Dunstan CR (2011) Computational modeling of interactions between multiple myeloma and the bone microenvironment. PLoS One 6(11):e27494

    Article  Google Scholar 

  • Warman P, Kaznatcheev A, Araujo A, Lynch C, Basanta D (2018) Fractionated follow-up chemotherapy delays the onset of resistance in bone metastatic prostate cancer. Games 9(2):19

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang J, Qiu X, Xi K, Hu W, Pei H, Nie J, Zhou G (2018) Therapeutic ionizing radiation induced bone loss: a review of in vivo and in vitro findings. Connect Tissue Res 29:1–14

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the anonymous reviewers, whose careful observations and helpful suggestions improved considerably the quality of this work. Moreover, AC thanks CONACyT for the Graduate Fellowship Grant 412803. Finally, this work was partially supported by Mexico CONACyT Project CB2016-286437.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Jerez.

Appendix A: Proof of Theorem 2

Appendix A: Proof of Theorem 2

We follow (Fister et al. 1998) to show uniqueness of the optimal solution for the model (4) under certain conditions over the final time. First, we state some basic results.

Lemma 6

Let \(a,b,c, \bar{a}, \bar{b}, \bar{c}\) be real positive numbers such that they are bounded by some positive constant M. Then

  1. i)

    \(ab - \bar{a}\bar{b} \le M (|a-\bar{a}| + |b-\bar{b}|).\)

  2. ii)

    \((ab - \bar{a}\bar{b}) (c - \bar{c}) \le M ( (a-\bar{a})^2 + (b-\bar{b})^2 + (c-\bar{c})^2).\)

\(\square \)

Now, we proceed to prove Theorem 3.

Proof

Let suppose that there are two optimal pairs \( (x, \lambda , u)\) and \((\bar{x}, \bar{\lambda }, \bar{u})\) that solve the problem (4) and the adjoint system (12), where \(u=u_D\), \(x=(x_1, x_2, x_3)\), \(x_1=C\), \(x_2=B\), \(x_3=T\), and \(\lambda = (\lambda _1, \lambda _2, \lambda _3)\). Let \(m > 0\) be fixed. Then there exist functions \(y_1, y_2, y_3\) and \(\mu _1, \mu _2, \mu _3\) (also with bar) such that \( x_i = y_i e^{mt},\ \bar{x}_i = {y}_i e^{mt},\ \lambda _i = \mu _i e^{-mt},\ \bar{\lambda }_i = \bar{\mu }_i e^{-mt}\). Then:

$$\begin{aligned} u&= \max \left\{ 0, \min \left\{ 1, \frac{\alpha _1 e^{m g_1 t} y_1 y_2^{g_1}\mu _1}{2 B}\right\} \right\} , \\ \bar{u}&= \max \left\{ 0, \min \left\{ 1, \frac{\alpha _1 e^{m g_1 t} \bar{y}_1 \bar{y}_2^{g_1}\bar{\mu }_1}{2 B}\right\} \right\} . \end{aligned}$$

Substituting into the optimality system (4b)–(4d) and (12) we get:

$$\begin{aligned} y_1' e^{mt} + m y_1 e^{mt} =&\alpha _1 e^{mt} e^{m g_1 t} y_1 y_2^{g_1} (1 - u) - \beta _1 e^{mt} y_1 + \sigma _1 e^{2mt}y_1 y_3,\\ y_2' e^{mt} + m y_2 e^{mt} =&\alpha _2 e^{m g_2 t} e^{m t} y_1^{g_2} y_2 - \beta _2 e^{mt} y_2 + \sigma _2 e^{2mt} y_2 y_3,\\ y_3' e^{mt} + m y_3 e^{mt} =&\alpha _3 e^{mt} y_3\left( 1 - e^{mt} y_3/K\right) - \beta _3 e^{mt} y_3 + \sigma _3 e^{m g_2 t} e^{m t}y_1^{g_2} y_3 \\&+ \sigma _4 e^{m g_1 t} e^{mt} y_2^{g_1} y_3,\\ \mu _1' e^{-mt} - m \mu _1 e^{-mt} =&- e^{-mt} \mu _1(\alpha _1 e^{m g_1 t} y_2^{g_1}(1-u) - \beta _1 + \sigma _1 e^{mt} y_3) \\&- e^{-mt} \mu _2(\alpha _2 g_2 e^{m(g_2-1)t} y_1^{g_2-1} e^{mt} y_2) \\&- e^{-mt} \mu _3(\sigma _3 g_2 e^{m(g_2-1)t} y_1^{g_2-1} e^{mt} y_3), \\ \mu _2' e^{-mt} - m \mu _2 e^{-mt} =&- e^{-mt} \mu _1 (\alpha _1 g_1 e^{mt} e^{m(g_1-1)t} y_1 y_2^{g_1-1}(1-u)) \\&- e^{-mt} \mu _2 (\alpha _2 e^{m g_2 t} y_1^{g_2} - \beta _2 + \sigma _2 e^{mt} y_3) \\&- e^{-mt} \mu _3(\sigma _4 g_1 e^{m(g_1-1)t} y_2^{g_1-1} e^{mt} y_3), \\ \mu _3' e^{-mt} - m \mu _3 e^{-mt} =&- e^{-mt} \mu _1(\sigma _1 e^{mt} y_1) - e^{-mt} \mu _2(\sigma _2 e^{mt} y_2) \\&- e^{-mt} \mu _3(\alpha _3 (1 - 2 e^{mt} y_3/K) - \beta _3 \\&+ \sigma _3 e^{m g_2 t} y_1^{g_2} + \sigma _4 e^{m g_1 t} y_2^{g_1} ) \\&- 2 e^{mt} y_3. \end{aligned}$$

We can divide the first three equations by \(e^{mt}\) and the other three by \(e^{-mt}\). Simplifying:

$$\begin{aligned} y_1' + m y_1 =&\alpha _1 e^{m g_1 t} y_1 y_2^{g_1} (1 - u) - \beta _1 y_1 + \sigma _1 e^{mt} y_1 y_3,\\ y_2' + m y_2 =&\alpha _2 e^{m g_2 t} y_1^{g_2} y_2 - \beta _2 y_2 + \sigma _2 e^{mt} y_2 y_3,\\ y_3' + m y_3 =&\alpha _3 y_3 \left( 1 - e^{mt} y_3/K\right) - \beta _3 y_3 + \sigma _3 e^{m g_2 t} y_1^{g_2} y_3 + \sigma _4 e^{m g_1 t} y_2^{g_1} y_3,\\ \mu _1' - m \mu _1 =&- \mu _1(\alpha _1 e^{m g_1 t} y_2^{g_1}(1-u) - \beta _1 + \sigma _1 e^{mt} y_3) - \mu _2(\alpha _2 g_2 e^{m g_2 t} y_1^{g_2-1} y_2)\\&- \mu _3(\sigma _3 g_2 e^{m g_2 t} y_1^{g_2-1} y_3),\\ \mu _2' - m \mu _2 =&- \mu _1 (\alpha _1 g_1 e^{m g_1 t} y_1 y_2^{g_1-1}(1-u)) - \mu _2 (\alpha _2 e^{m g_2 t} y_1^{g_2} - \beta _2 + \sigma _2 e^{mt} y_3) \\&- \mu _3(\sigma _4 g_1 e^{m g_1 t} y_2^{g_1-1} y_3),\\ \mu _3' - m \mu _3 =&- \mu _1(\sigma _1 e^{mt} y_1) - \mu _2(\sigma _2 e^{mt} y_2) \\&- \mu _3(\alpha _3 (1 - 2 e^{mt} y_3/K) - \beta _3 + \sigma _3 e^{m g_2 t} y_1^{g_2} + \sigma _4 e^{m g_1 t} y_2^{g_1}) - 2 e^{2mt} y_3. \end{aligned}$$

The system related to the other optimal solution \((\bar{x},\bar{\lambda },\bar{u})\) is analogous. Subtracting the corresponding equations related to \((x,\lambda ,u)\) and \((\bar{x},\bar{\lambda },\bar{u})\) we get:

$$\begin{aligned} (y_1 - \bar{y_1})' + m (y_1 - \bar{y_1}) =&\alpha _1 e^{m g_1 t} (y_1 y_2^{g_1} (1 - u) - \bar{y_1} \bar{y_2}^{g_1} (1 - \bar{u})) \\&- \beta _1 (y_1 - \bar{y_1}) + \sigma _1 e^{mt} (y_1 y_3 - \bar{y_1} \bar{y_3}), \\ (y_2 - \bar{y_2})' + m (y_2 - \bar{y_2}) =&\alpha _2 e^{m g_2 t} (y_1^{g_2} y_2 - \bar{y_1}^{g_2} \bar{y_2}) - \beta _2 (y_2 - \bar{y_2}) \\&+ \sigma _2 e^{mt} (y_2 y_3 - \bar{y_2} \bar{y_3}), \\ (y_3 - \bar{y_3})' + m (y_3 - \bar{y_3}) =&\alpha _3 \left( (y_3 - \bar{y_3}) - e^{mt} (y_3^2 - \bar{y_3}^2)/K\right) \\&- \beta _3 (y_3 - \bar{y_3}) + \sigma _3 e^{m g_2 t} (y_1^{g_2} y_3 - \bar{y_1}^{g_2} \bar{y_3}) \\&+ \sigma _4 e^{m g_1 t} (y_2^{g_1} y_3 - \bar{y_2}^{g_1} \bar{y_3}), \\ (\mu _1 - \bar{\mu _1})' - m (\mu _1 - \bar{\mu _1}) =&- \alpha _1 e^{m g_1 t} (\mu _1 y_2^{g_1} - \bar{\mu _1} \bar{y_2}^{g_1}) \\&+ \alpha _1 e^{m g_1 t} (\mu _1 y_2^{g_1} u - \bar{\mu _1} \bar{y_2}^{g_1} \bar{u})\\&+ \beta _1 (\mu _1 - \bar{\mu _1}) - \sigma _1 e^{mt} (\mu _1 y_3 - \bar{\mu _1} \bar{y_3}) \\&- \alpha _2 g_2 e^{m g_2 t} (\mu _2 y_1^{g_2-1} y_2 - \bar{\mu _2} \bar{y_1}^{g_2-1} \bar{y_2}) \\&- \sigma _3 g_2 e^{m g_2 t} (\mu _3 y_1^{g_2-1} y_3 - \bar{\mu _3} \bar{y_1}^{g_2-1} \bar{y_3}), \\ (\mu _2 - \bar{\mu _2})' - m (\mu _2 - \bar{\mu _2}) =&- \alpha _1 g_1 e^{m g_1 t} ( \mu _1 y_1 y_2^{g_1-1} - \bar{\mu _1} \bar{y_1} \bar{y_2}^{g_1-1}) \\&+ \alpha _1 g_1 e^{m g_1 t} ( \mu _1 y_1 y_2^{g_1-1} u - \bar{\mu _1} \bar{y_1} \bar{y_2}^{g_1-1} \bar{u}) \\&- \alpha _2 e^{m g_2 t} (\mu _2 y_1^{g_2} - \bar{\mu _2} \bar{y_1}^{g_2}) \\&+ \beta _2 (\mu _2 - \bar{\mu _2}) - \sigma _2 e^{mt} (\mu _2 y_3 - \bar{\mu _2} \bar{y_3}) \\&- \sigma _4 g_1 e^{m g_1 t} (\mu _3 y_2^{g_1-1} y_3 - \bar{\mu _3} \bar{y_2}^{g_1-1} \bar{y_3}), \\ (\mu _3 - \bar{\mu _3})' - m (\mu _3 - \bar{\mu _3}) =&- \sigma _1 e^{mt} (\mu _1 y_1 - \bar{\mu _1} \bar{y_1}) - \sigma _2 e^{mt} (\mu _2 y_2 - \bar{\mu _2} \bar{y_2}) \\&- \alpha _3 (\mu _3 - \bar{\mu _3}) + \frac{2 \alpha _3 e^{mt}}{K} (\mu _3 y_3 - \bar{\mu _3} \bar{y_3}) \\&+ \beta _3 (\mu _3 - \bar{\mu _3}) \\&- \sigma _3 e^{m g_2 t} (y_1^{g_2} - \bar{y_1}^{g_2}) - \sigma _4 e^{m g_1 t} (y_2^{g_1} - \bar{y_2}^{g_1}) \\&- 2 e^{2mt} (y_3 - \bar{y_3}). \end{aligned}$$

Now, we multiply each equation by the left-hand side without the derivative and then integrate from 0 to a time T. We present next the result of doing this just for \(y_1\) and \(\mu _1\) since the other variables have similar expressions:

$$\begin{aligned}&\left. \frac{1}{2}(y_1 - \bar{y_1})^2\right| _0^T + m \int _{0}^{T} (y_1 - \bar{y_1})^2 dt \\&\quad =\alpha _1 \int _{0}^{T} (y_1 - \bar{y_1}) e^{m g_1 t} (y_1 y_2^{g_1} - \bar{y_1} \bar{y_2}^{g_1}) dt\\&\qquad - \alpha _1 \int _{0}^{T} (y_1 - \bar{y_1}) e^{m g_1 t} (y_1 y_2^{g_1} u - \bar{y_1} \bar{y_2}^{g_1} \bar{u}) dt \\&\qquad - \beta _1 \int _{0}^{T} (y_1 - \bar{y_1})^2 dt + \sigma _1 \int _{0}^{T} (y_1 - \bar{y_1}) e^{mt} (y_1 y_3 - \bar{y_1} \bar{y_3}) dt,\\&\qquad -\left. \frac{1}{2}(\mu _1 - \bar{\mu _1})^2\right| _0^T + m \int _{0}^{T} (\mu _1 - \bar{\mu _1})^2 dt = \\&\qquad \alpha _1 \int _{0}^{T} (\mu _1 - \bar{\mu _1}) e^{m g_1 t} (\mu _1 y_2^{g_1} - \bar{\mu _1} \bar{y_2}^{g_1}) dt \\&\qquad - \alpha _1 \int _{0}^{T} (\mu _1 - \bar{\mu _1}) e^{m g_1 t} (\mu _1 y_2^{g_1} u - \bar{\mu _1} \bar{y_2}^{g_1} \bar{u}) dt \\&\qquad - \beta _1 \int _{0}^{T} (\mu _1 - \bar{\mu _1})^2 dt + \sigma _1 \int _{0}^{T} (\mu _1 - \bar{\mu _1}) e^{mt} (\mu _1 y_3 - \bar{\mu _1} \bar{y_3}) dt \\&\qquad + \alpha _2 g_2 \int _{0}^{T} (\mu _1 - \bar{\mu _1}) e^{m g_2 t} (\mu _2 y_1^{g_2-1} y_2 - \bar{\mu _2} \bar{y_1}^{g_2-1} \bar{y_2}) dt \\&\qquad + \sigma _3 g_2 \int _{0}^{T} (\mu _1 - \bar{\mu _1}) e^{m g_2 t} (\mu _3 y_1^{g_2-1} y_3 - \bar{\mu _3} \bar{y_1}^{g_2-1} \bar{y_3}) dt. \\ \end{aligned}$$

On the other hand, we also have:

$$\begin{aligned} \int _0^T (u-\bar{u})^2 dt =&\int _0^T \left( \max \left\{ 0, \min \left\{ 1, \frac{\alpha _1 e^{m g_1 t} y_1 y_2^{g_1}\mu _1}{2 B}\right\} \right\} \right. \\&\left. - \max \left\{ 0, \min \left\{ 1, \frac{\alpha _1 e^{m g_1 t} \bar{y}_1 \bar{y}_2^{g_1}\bar{\mu }_1}{2 B}\right\} \right\} \right) ^2 dt\\ \le&\int _0^T \left( \frac{\alpha _1 e^{m g_1 t} y_1 y_2^{g_1}\mu _1}{2 B} - \frac{\alpha _1 e^{m g_1 t} \bar{y}_1 \bar{y}_2^{g_1}\bar{\mu }_1}{2 B} \right) ^2 dt \\ \le&\frac{\alpha _1}{2B} \int _0^T \left( y_1 y_2^{g_1} \mu _1 - \bar{y_1} \bar{y_2}^{g_1} \bar{\mu _1}\right) ^2 dt. \end{aligned}$$

Now, using that the function \(f(y_1, y_2, \mu _1) = y_1 y_2^{g_1} \mu _1\) is locally Lipschitz, we can conclude that there exists a positive constant L such that:

$$\begin{aligned}&\frac{\alpha _1}{2B} \int _0^T \left( y_1 y_2^{g_1} \mu _1 - \bar{y_1} \bar{y_2}^{g_1} \bar{\mu _1}\right) ^2 dt \\&\quad \le \frac{\alpha _1 L}{2B} \int _0^T \left( (y_1 - \bar{y_1})^2 + (y_2 - \bar{y_2})^2 + (\mu _1 - \bar{\mu _1})^2 \right) dt. \end{aligned}$$

Another useful inequality is derived from using Lemma 6 two times successively and the locally Lipschitz condition for \(f(y_2) = y_2^{g_1}\). Hence we have:

$$\begin{aligned} |y_1 - \bar{y_1}| (y_1 y_2^{g_1} u - \bar{y_1} \bar{y_2}^{g_1} \bar{u}) \le M_5 ((y_1-\bar{y_1})^2 + (u-\bar{u})^2 + (y_2 - \bar{y_2})^2 ) \end{aligned}$$

for some constant \(M_5 > 0\). Now, using the previous results and summing up the expression for the six variables we can get: Summing the above six equations and grouping terms we get:

$$\begin{aligned}&\left( m - L_{11} - L_{12} e^{mT} - L_{13} - L_{21} e^{m g_2 T} - L_{22} e^{mT} - L_{31} - L_{32} e^{mT} \right. \\&\quad \left. - L_{33} e^{m g_2 T} - L_{34} - L_{41} - L_{42} - L_{43} e^{mT} - L_{44} e^{m g_2 T} - L_{45} e^{m g_2 T} - L_{51} - L_{52} \right. \\&\quad - L_{53} e^{m g_2 T} - L_{54} e^{mT} - L_{55} - L_{61} e^{mT} - L_{62} e^{mT} - L_{63} - L_{64} e^{mT} - L_{65} e^{m g_2 T} \\&\quad \left. - L_{66} e^{2mT} - L_{67} \right) \int _0^T \left( (y_1-\bar{y_1})^2 \right. \\&\quad \left. +(y_2-\bar{y_2})^2 +(y_3-\bar{y_3})^2+(\mu _1-\bar{\mu _1})^2 +(\mu _2-\bar{\mu _2})^2 +(\mu _3-\bar{\mu _3})^2 \right) dt \le 0. \end{aligned}$$

This can be rewritten as:

$$\begin{aligned}&\left( m - C_1 - C_2 e^{mT} - C_3 e^{m g_2 T} - C_4 e^{2mT} \right) \\&\quad \int _0^T \left( (y_1-\bar{y_1})^2 +(y_2-\bar{y_2})^2 +(y_3-\bar{y_3})^2 \right. \\&\quad \left. +(\mu _1-\bar{\mu _1})^2 +(\mu _2-\bar{\mu _2})^2 +(\mu _3-\bar{\mu _3})^2 \right) dt \le 0. \end{aligned}$$

So if \(m - C_1 - C_2 e^{mT} - C_3 e^{m g_2 T} - C_4 e^{2mT} > 0\) then \(y_1 = \bar{y_1}\), \(y_2 = \bar{y_2}\), \(y_3 = \bar{y_3}\), \(\mu _1 = \bar{\mu _1}\), \(\mu _2 = \bar{\mu _2}\) and \(\mu _3 = \bar{\mu _3}\), and therefore the OC solutions u and \(\bar{u}\) are the same. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Camacho, A., Jerez, S. Bone metastasis treatment modeling via optimal control. J. Math. Biol. 78, 497–526 (2019). https://doi.org/10.1007/s00285-018-1281-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-018-1281-3

Keywords

Mathematics Subject Classification

Navigation