Skip to main content

Advertisement

Log in

Effects of the mTOR and AKT genes polymorphisms on systemic lupus erythematosus risk

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The systemic lupus erythematosus (SLE) is an autoimmune disease, leading to inflammatory response and systemic consequences. The mammalian target of rapamycin (mTOR) is a therapeutic target for autoimmune diseases like SLE. The aim of this study was to evaluate the effects of the mTOR rs2295080 and rs2536 polymorphisms and AKT1 rs2494732 gene polymorphism on SLE development. 2 ml of peripheral blood was collected from 165 SLE patients and 170 controls in EDTA-containing tubes. The salting-out and PCR–RFLP methods were used for DNA extraction and genotype analysis, respectively. Based on the regression analysis, the frequency of TT genotype of mTOR rs2295080 polymorphism was significantly higher in the case group than that of the control group, with a 2.6-fold increased risk of SLE. There was also a significant difference between the two groups in terms of allelic distribution. No statistically significant association was found between The AKT1 rs2494732 and mTOR rs2536 polymorphisms and SLE development. Our results showed that the TT genotype and T allele of mTOR rs2295080 polymorphism were risk factors for developing SLE. However, there was no significant association between mTOR rs2536 and AKT1 rs2494732 polymorphisms and the SLE risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sigurdsson S, Nordmark G, Goring HH, Lindroos K, Wiman AC, Sturfelt G et al (2005) Polymorphisms in the tyrosine kinase 2 and interferon regulatory factor 5 genes are associated with systemic lupus erythematosus. Am J Hum Genet 76(3):528–537

    Article  CAS  Google Scholar 

  2. Han S, Zhuang H, Shumyak S, Yang L, Reeves WH (2015) Mechanisms of autoantibody production in systemic lupus erythematosus. Front Immunol 6:228

    Article  Google Scholar 

  3. Yacoub Wasef SZ (2004) Gender differences in systemic lupus erythematosus. Gend Med 1(1):12–17

    Article  Google Scholar 

  4. Weckerle CE, Niewold TB (2011) The unexplained female predominance of systemic lupus erythematosus: clues from genetic and cytokine studies. Clin Rev Allergy Immunol 40(1):42–49

    Article  CAS  Google Scholar 

  5. Mok CC, Lau CS (2003) Pathogenesis of systemic lupus erythematosus. J Clin Pathol 56(7):481–490

    Article  CAS  Google Scholar 

  6. Harati-Sadegh M, Kohan L, Teimoori B, Mehrabani M, Salimi S (2018) The association of the placental hypoxia-inducible factor1-α polymorphisms and HIF1-α mRNA expression with preeclampsia. Placenta 67:31–37

    Article  CAS  Google Scholar 

  7. Sandoughi M, Saravani M, Rokni M, Nora M, Mehrabani M, Dehghan A (2020) Association between COX-2 and 15-PGDH polymorphisms and SLE susceptibility. Int J Rheum Dis. https://doi.org/10.1111/1756-185X.13808

    Article  PubMed  Google Scholar 

  8. Saxton RA, Sabatini DM (2017) mTOR signaling in growth, metabolism, and disease. Cell 168(6):960–976

    Article  CAS  Google Scholar 

  9. Fernandez D, Perl A (2010) mTOR signaling: a central pathway to pathogenesis in systemic lupus erythematosus? Discov Med 9(46):173–178

    PubMed  PubMed Central  Google Scholar 

  10. Perl A (2015) Activation of mTOR (mechanistic target of rapamycin) in rheumatic diseases. Nat Rev Rheumatol 12:169

    Article  Google Scholar 

  11. Bermudez Y, Stratton SP, Curiel-Lewandrowski C, Warneke J, Hu C, Bowden GT et al (2015) Activation of the PI3K/Akt/mTOR and MAPK signaling pathways in response to acute solar-simulated light exposure of human skin. Cancer Prev Res (Phila) 8(8):720–728

    Article  CAS  Google Scholar 

  12. Carr TD, DiGiovanni J, Lynch CJ, Shantz LM (2012) Inhibition of mTOR suppresses UVB-induced keratinocyte proliferation and survival. Cancer Prev Res (Phila) 5(12):1394–1404

    Article  CAS  Google Scholar 

  13. Wysenbeek AJ, Block DA, Fries JF (1989) Prevalence and expression of photosensitivity in systemic lupus erythematosus. Ann Rheum Dis 48(6):461–463

    Article  CAS  Google Scholar 

  14. Fortin CF, Cloutier A, Ear T, Sylvain-Prévost S, Mayer TZ, Bouchelaghem R et al (2011) A class IA PI3K controls inflammatory cytokine production in human neutrophils. Eur J Immunol 41(6):1709–1719

    Article  CAS  Google Scholar 

  15. Xie S, Chen M, Yan B, He X, Chen X, Li D (2014) Identification of a role for the PI3K/AKT/mTOR signaling pathway in innate immune cells. PLoS ONE 9(4):e94496

    Article  Google Scholar 

  16. Garcia-Rodriguez S, Callejas-Rubio JL, Ortego-Centeno N, Zumaquero E, Rios-Fernandez R, Arias-Santiago S et al (2012) Altered AKT1 and MAPK1 gene expression on peripheral blood mononuclear cells and correlation with T-helper-transcription factors in systemic lupus erythematosus patients. Mediators Inflamm 2012:495934

    PubMed  PubMed Central  Google Scholar 

  17. Taher TE, Parikh K, Flores-Borja F, Mletzko S, Isenberg DA, Peppelenbosch MP et al (2010) Protein phosphorylation and kinome profiling reveal altered regulation of multiple signaling pathways in B lymphocytes from patients with systemic lupus erythematosus. Arthritis Rheum 62(8):2412–2423

    Article  CAS  Google Scholar 

  18. López-Cortés A, Leone PE, Freire-Paspuel B, Arcos-Villacís N, Guevara-Ramírez P, Rosales F et al (2018) Mutational analysis of oncogenic AKT1 gene associated with breast cancer risk in the high altitude Ecuadorian Mestizo population. Biomed Res Int. 2018:7463832

    Article  Google Scholar 

  19. Karege F, Meary A, Perroud N, Jamain S, Leboyer M, Ballmann E et al (2012) Genetic overlap between schizophrenia and bipolar disorder: a study with AKT1 gene variants and clinical phenotypes. Schizophr Res 135(1–3):8–14

    Article  Google Scholar 

  20. Zhao Y, Diao Y, Wang X, Lin S, Wang M, Kang H et al (2016) Impacts of the mTOR gene polymorphisms rs2536 and rs2295080 on breast cancer risk in the Chinese population. Oncotarget 7(36):58174–58180

    Article  Google Scholar 

  21. Cao Q, Ju X, Li P, Meng X, Shao P, Cai H et al (2012) A functional variant in the MTOR promoter modulates its expression and is associated with renal cell cancer risk. PLoS ONE 7(11):e50302

    Article  CAS  Google Scholar 

  22. Li Q, Gu C, Zhu Y, Wang M, Yang Y, Wang J et al (2013) Polymorphisms in the mTOR gene and risk of sporadic prostate cancer in an Eastern Chinese population. PLoS ONE 8(8):e71968

    Article  CAS  Google Scholar 

  23. Saravani M, Rokni M, Mehrbani M, Amirkhosravi A, Faramarz S, Fatemi I et al (2019) The evaluation of VEGF and HIF-1α genes polymorphisms and multiple sclerosis susceptibility. J Gene Med 21(12):e3132

    Article  CAS  Google Scholar 

  24. Azmandian J, Mohamadifar M, Rahmanian-Koshkaki S, Mehdipoor M, Nematollahi M-H, Saburi A et al (2015) Study of the association between the donors and recipients angiotensin-converting enzyme insertion/deletion gene polymorphism and the acute renal allograft rejection. J Nephropathol 4(3):62

    PubMed  PubMed Central  Google Scholar 

  25. Zhang X, Chen X, Zhai Y, Cui Y, Cao P, Zhang H et al (2014) Combined effects of genetic variants of the PTEN, AKT1, MDM2 and p53 genes on the risk of nasopharyngeal carcinoma. PLoS ONE 9(3):e92135

    Article  Google Scholar 

  26. Haq ANu, Triwani T, Parisa N (2019) Identifikasi Polimorfisme Gen mTOR rs 2536 dan rs 2295080 serta Ekspresi ER, PR, HER-2, Ki-67 pada Penderita Kanker Payudara. Sriwij J Med 2(3):178–185

    Article  Google Scholar 

  27. Zhang S, Readinger JA, DuBois W, Janka-Junttila M, Robinson R, Pruitt M et al (2011) Constitutive reductions in mTOR alter cell size, immune cell development, and antibody production. Blood 117(4):1228–1238

    Article  CAS  Google Scholar 

  28. Tuijnenburg P, ann de Kerk DJ, Jansen MH, Morris B, Lieftink C, Beijersbergen RL et al (2020) High-throughput compound screen reveals mTOR inhibitors as potential therapeutics to reduce (auto)antibody production by human plasma cells. Eur J Immunol 50(1):73–85

    Article  CAS  Google Scholar 

  29. Stylianou K, Petrakis I, Mavroeidi V, Stratakis S, Vardaki E, Perakis K et al (2010) The PI3K/Akt/mTOR pathway is activated in murine lupus nephritis and downregulated by rapamycin. Nephrol Dial Transplant 26(2):498–508

    Article  Google Scholar 

  30. Lai ZW, Kelly R, Winans T, Marchena I, Shadakshari A, Yu J et al (2018) Sirolimus in patients with clinically active systemic lupus erythematosus resistant to, or intolerant of, conventional medications: a single-arm, open-label, phase 1/2 trial. Lancet 391(10126):1186–1196

    Article  CAS  Google Scholar 

  31. Oaks Z, Winans T, Caza T, Fernandez D, Liu Y, Landas SK et al (2016) Mitochondrial Dysfunction in the Liver and Antiphospholipid Antibody Production Precede Disease Onset and Respond to Rapamycin in Lupus-Prone Mice. Arthritis Rheumatol 68(11):2728–2739

    Article  CAS  Google Scholar 

  32. Oaks Z, Winans T, Huang N, Banki K, Perl A (2016) Activation of the mechanistic target of rapamycin in SLE: explosion of evidence in the last five years. Curr Rheumatol Rep 18(12):73

    Article  Google Scholar 

  33. Dan HC, Ebbs A, Pasparakis M, Van Dyke T, Basseres DS, Baldwin AS (2014) Akt-dependent activation of mTORC1 complex involves phosphorylation of mTOR (mammalian target of rapamycin) by IkappaB kinase alpha (IKKalpha). J Biol Chem 289(36):25227–25240

    Article  CAS  Google Scholar 

  34. Sancak Y, Thoreen CC, Peterson TR, Lindquist RA, Kang SA, Spooner E et al (2007) PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase. Mol Cell 25(6):903–915

    Article  CAS  Google Scholar 

  35. Ge F, Wang F, Yan X, Li Z, Wang X (2017) Association of BAFF with PI3K/Akt/mTOR signaling in lupus nephritis. Mol Med Rep 16(5):5793–5798

    Article  CAS  Google Scholar 

  36. Piao Y, Li Y, Xu Q, Liu J-W, Xing C-Z, Xie X-D et al (2015) Association of MTOR and AKT gene polymorphisms with susceptibility and survival of gastric cancer. PLoS ONE 10(8):e0136447

    Article  Google Scholar 

  37. Le Rhun E, Bertrand N, Dumont A, Tresch E, Le Deley MC, Mailliez A et al (2017) Identification of single nucleotide polymorphisms of the PI3K-AKT-mTOR pathway as a risk factor of central nervous system metastasis in metastatic breast cancer. Eur J Cancer 87:189–198

    Article  Google Scholar 

  38. Bizhani F, Hashemi M, Danesh H, Nouralizadeh A, Narouie B, Bahari G et al (2018) Association between single nucleotide polymorphisms in the PI3K/AKT/mTOR pathway and bladder cancer risk in a sample of Iranian population. Excli j 17:3–13

    PubMed  PubMed Central  Google Scholar 

  39. Liu T, Gulinaer A, Shi X, Wang F, An H, Cui W et al (2017) Gene polymorphisms in the PI3K/AKT/mTOR signaling pathway contribute to prostate cancer susceptibility in Chinese men. Oncotarget 8(37):61305–61317

    Article  Google Scholar 

  40. Jiang W, Zhang W, Wu L, Liu L, Men Y, Wang J et al (2017) MicroRNA-related polymorphisms in PI3K/Akt/mTOR pathway genes are predictive of limited-disease small cell lung cancer treatment outcomes. Biomed Res Int 2017:6501385

    PubMed  PubMed Central  Google Scholar 

  41. Campos-Salazar AB, Genvigir FDV, Felipe CR, Tedesco-Silva H, Medina-Pestana J, Monteiro GV et al (2018) Polymorphisms in mTOR and calcineurin signaling pathways are associated with long-term clinical outcomes in kidney transplant recipients. Front Pharmacol 9:1296

    Article  CAS  Google Scholar 

Download references

Funding

This study was fully supported by the Student Research Committee of Kerman University of Medical Sciences, Kerman, Iran (Grant No. 98000356).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Hadi Nematollahi.

Ethics declarations

Conflict of interest

We declare that there is no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saravani, M., Shahraki-Ghadimi, H., Maruei-Milan, R. et al. Effects of the mTOR and AKT genes polymorphisms on systemic lupus erythematosus risk. Mol Biol Rep 47, 3551–3556 (2020). https://doi.org/10.1007/s11033-020-05446-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05446-y

Keywords

Navigation