Skip to main content
Log in

Functional annotation of mulberry (Morus spp.) transcriptome, differential expression of genes related to growth and identification of putative genic SSRs, SNPs and InDels

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Growth is a complex trait associated with mulberry leaf yield and controlled by several genes. In this study, we have explored the molecular basis underlying growth using Transcriptome profiling of contrasting genotypes. A total of 66.6 Mbp of primary transcriptomes from high growth (HGG)—Jalalgarah-3 and M. laevigata (H) and, low growth genotypes (LGG)—Harmutty and Vadagaraparai-2; resulting in 24210, 27998, 28085 and 28764 final transcripts respectively. Out of the 34096 pooled transcripts, 20249 transcripts matched with at least one sequence of the non-redundant database. Functional annotation resulted in the categorization of 18970 transcripts into 3 gene ontology (GO) terms and 7440 were assigned to 23 Kyoto encyclopaedia of genes and genomes (KEGG) pathway. Based on the differentially expressed genes and gene enrichment analysis, over expression of photosynthetic related transcripts in HGG and defence related transcripts in LGG were noted. Simple sequence repeats were mined from unique transcripts and the most abundant motifs were tri- (1883) followed by di- (1710), tetra- (192), penta- (68) and hexa- (40) repeats. Further, a total of 390897 high quality SNPs and 8081 InDels were identified by mapping onto Morus notabilis reference genome. The study provides an insight into the expression of genes involved in growth and further research on utilization in gentic improvement of the crop.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data that supports the findings of this study have been deposited in NCBI GeneBank Short Read Archive with the accession numbers SAMN10438406, SAMN10438407, SAMN10438408, and SAMN10438409.

Abbreviations

HGG:

High growth genotypes

LGG:

Low growth genotypes

DEGs:

Differentially expressed genes

SSRs:

Simple sequence repeats

SNPs:

Single nucleotide polymorphisms

InDel:

Insertion/deletion

GO:

Gene ontology

KEGG:

Kyoto encyclopaedia of genes and genomes

SFB:

Shoot fresh biomass

SDB:

Shoot dry biomass

A :

Photosynthetic rate

Gs :

Stomatal conductance

Tr :

Transpiration rate

References

  1. Rahmathulla VK (2012) Management of climatic factors for successful silkworm (Bombyx mori L.) crop and higher silk production. A review. Psyche. https://doi.org/10.1155/2012/121234

    Article  Google Scholar 

  2. Sánchez MD (2002) Mulberry: an exceptional forage available almost worldwide. World Anim Rev 93:1–21

    Google Scholar 

  3. Bown D (2003) The Royal Horticultural Society encyclopedia of herbs and their uses. Dorling Kindersley Limited, London, p 448

    Google Scholar 

  4. Chen PN, Chu SC, Chiou HL et al (2006) Mulberry anthocyanins, cyanidin 3-rutinoside and cyanidin 3-glucoside, exhibited an inhibitory effect on the migration and invasion of a human lung cancer cell line. Cancer Lett 235:248–259

    Article  CAS  PubMed  Google Scholar 

  5. Konno K, Ono H, Nakamura M et al (2006) Mulberry latex rich in antidiabetic sugar-mimic alkaloids forces dieting on caterpillars. Proc Natl Acad Sci 103:1337–1341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Machii H, Koyama A (1917) Mulberry breeding, cultivation and utilization in Japan. Anim Prod Health Paper 147:63

    Google Scholar 

  7. De Souza MM, Bittar M, Cechinel-Filho V et al (2000) Antinociceptive properties of morusin, a prenylflavonoid isolated from Morus nigra root bark. Zeitschrift für Naturforschung C 55:256–260

    Article  Google Scholar 

  8. Gerasopoulos D, Stavroulakis G (1997) Quality characteristics of four mulberry (Morus sp) cultivars in the area of Chania, Greece. J Sci Food Agric 73:261–264

    Article  CAS  Google Scholar 

  9. Rukmangada MS, Ramasamy S, Sivaprasad V, Varkody GN (2018) Growth performance in contrasting sets of mulberry (Morus Spp.) genotypes explained by logistic and linear regression models using morphological and gas exchange parameters. Sci Hortic 235:53–61

    Article  Google Scholar 

  10. Rukmangada MS, Sumathy R, Sivaprasad V, Naik VG (2018) Genome-wide identification and characterization of growth-regulating factors in mulberry (Morus spp.). Trees 32:1695–1705

    Article  CAS  Google Scholar 

  11. Hollender CA, Dardick C (2015) Molecular basis of angiosperm tree. New Phytol 206:541–556

    Article  PubMed  Google Scholar 

  12. González-Plaza JJ, Ortiz-Martín I, Muñoz-Mérida A et al (2016) Transcriptomic analysis using olive varieties and breeding progenies identifies candidate genes involved in plant architecture. Front Plant Sci 7:1–21

    Article  Google Scholar 

  13. Morozova O, Hirst M, Marra MA (2009) Applications of new sequencing technologies for transcriptome analysis. Annu Rev Genomics Hum Genet 10:135–151

    Article  CAS  PubMed  Google Scholar 

  14. Wall PK, Leebens-Mack J, Chanderbali AS et al (2009) Comparison of next generation sequencing technologies for transcriptome characterization. BMC Genomics 10:347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Krost C, Petersen R, Schmidt ER (2012) The transcriptomes of columnar and standard type apple trees (Malus x domestica)—a comparative study. Gene 498:223–230

    Article  CAS  PubMed  Google Scholar 

  16. Alagna F, D’Agostino N, Torchia L et al (2009) Comparative 454 pyrosequencing of transcripts from two olive genotypes during fruit development. BMC Genomics 10:399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang J, Wu K, Zeng S et al (2013) Transcriptome analysis of Cymbidium sinense and its application to the identification of genes associated with floral development. BMC Genomics 14:1–17

    Article  Google Scholar 

  18. Du W, Ban Y, Nie H et al (2016) A comparative transcriptome analysis leads to new insights into the molecular events governing root formation in mulberry softwood cuttings. Plant Mol Biol Rep 34:365–373

    Article  CAS  Google Scholar 

  19. Wang W, Wang Y, Zhang Q et al (2009) Global characterization of Artemisia annua glandular trichome transcriptome using 454 pyrosequencing. BMC Genomics 10:465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang XW, Luan JB, Li JM et al (2010) De novo characterization of a whitefly transcriptome and analysis of its gene expression during development. BMC Genomics 11:400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang Z, Fang B, Chen J et al (2010) De novo assembly and characterization of root transcriptome using Illumina paired-end sequencing and development of cSSR markers in sweetpotato (Ipomoea batatas). BMC Genomics 11:1–14

    Article  CAS  Google Scholar 

  22. Zhao S, Tuan PA, Li X et al (2013) Identification of phenylpropanoid biosynthetic genes and phenylpropanoid accumulation by transcriptome analysis of Lycium chinense. BMC Genomics 14:802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sun Y, Fan XY, Cao DM et al (2010) Integration of brassinosteroid signal transduction with the transcription network for plant growth regulation in Arabidopsis. Dev Cell 19:765–777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Garg R, Patel RK, Tyagi AK, Jain M (2011) De novo assembly of chickpea transcriptome using short reads for gene discovery and marker identification. DNA Res 18:53–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Thangavelu K, Mukherjee P, Tikader A et al (1997) Catalogue on mulberry (Morus spp.) germplasm. Silkworm and Mulberry Germplasm Station, Hosur

    Google Scholar 

  26. Thangavelu K, Tikader A, Ramesh SR et al (2000) Catalogue on mulberry (Morus spp.) germplasm. Silkworm and Mulberry Germplasm Station, Hosur

    Google Scholar 

  27. Tikader A, Chandrasekhar M, Borpuzari MM et al (2006) Catalogue on mulberry (Morus Spp.) germplasm. Silkworm and Mulberry Germplasm Station, Hosur

    Google Scholar 

  28. Pinto MV, Poornima HS, Rukmangada MS et al (2018) Association mapping of quantitative resistance to charcoal root rot in mulberry germplasm. PLoS ONE 13:1–25

    Google Scholar 

  29. Minamizawa K (1997) Moriculture science of mulberry cultivation. Oxford & IBH Publishing Co Pvt, Ltd

    Google Scholar 

  30. Patel RK, Jain M (2012) NGS QC toolkit: a toolkit for quality control of next generation sequencing data. PLoS ONE 7:e30619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bankar KG, Todur VN, Shukla RN, Vasudevan M (2015) Ameliorated de novo transcriptome assembly using illumina paired end sequence data with trinity assembler. Genomics Data 5:352–359

    Article  PubMed  PubMed Central  Google Scholar 

  32. Li W, Godzik A (2006) Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22:1658–1659

    Article  CAS  PubMed  Google Scholar 

  33. Conesa A, Gotz S, Garcia-Gomez JM et al (2005) Blast2GO: a universal tool for anotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676

    Article  CAS  PubMed  Google Scholar 

  34. Ye J, Fang L, Zheng H et al (2006) WEGO: a web tool for plotting GO annotations. Nucleic Acids Res 34:293–297

    Article  Google Scholar 

  35. Moriya Y, Itoh M, Okuda S et al (2007) KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res 35:182–185

    Article  Google Scholar 

  36. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11:R106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Beissbarth T, Speed TP (2004) GOstat: find statistically overrepresented gene ontologies within a group of genes. Bioinformatics 20:1464–1465

    Article  CAS  PubMed  Google Scholar 

  39. Yu G, Wang L-G, Han Y, He Q-Y (2012) clusterProfiler: an R package for comparing biological themes among gene clusters. Omics 16:284–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. de Hoon MJL, Imoto S, Nolan J, Miyano S (2004) Open source clustering software. Bioinformatics 20:1453–1454

    Article  CAS  PubMed  Google Scholar 

  41. Saldanha AJ, Urbach JM, Wu G et al (2004) Java treeview–extensible visualization of microarray data. Bioinformatics 20:3246–3248

    Article  CAS  PubMed  Google Scholar 

  42. Ramesh Krishnan R, Sumathy R, Bindroo BB, Girish Naik V (2014) MulSatDB: a first online database for mulberry microsatellites. Trees 28:1793–1799

    Article  CAS  Google Scholar 

  43. Li H, Handsaker B, Wysoker A et al (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Danecek P, Auton A, Abecasis G et al (2011) The variant call format and VCFtools. Bioinformatics 27:2156–2158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cingolani P, Platts A, Wang LL et al (2012) A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: sNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin) 6:80–92

    Article  CAS  Google Scholar 

  46. Zenoni S, Ferrarini A, Giacomelli E et al (2010) Characterization of transcriptional complexity during berry development in Vitis vinifera using RNA-Seq. Plant Physiol 152:1787–1795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Dai F, Tang C, Wang Z et al (2015) De novo assembly, gene annotation, and marker development of mulberry (Morus atropurpurea) transcriptome. Tree Genet Genomes 11:26

    Article  Google Scholar 

  48. Saeed B, Baranwal VK, Khurana P (2016) Comparative transcriptomics and comprehensive marker resource development in mulberry. BMC Genomics 17:98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Liu Y, Zhou J, White KP (2014) RNA-seq differential expression studies: more sequence or more replication? Bioinformatics 30:301–304

    Article  CAS  PubMed  Google Scholar 

  50. Gharat SA, Parmar S, Tambat S et al (2016) Transcriptome analysis of the response to NaCl in Suaeda maritima provides an insight into salt tolerance mechanisms in halophytes. PLoS ONE 11:1–35

    Article  CAS  Google Scholar 

  51. Yong HY, Zou Z, Kok EP et al (2014) Comparative transcriptome analysis of leaves and roots in response to sudden increase in salinity in Brassica napus by RNA-seq. Biomed Res Int 2014:467395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yamamoto N, Takano T, Tanaka K et al (2015) Comprehensive analysis of transcriptome response to salinity stress in the halophytic turf grass Sporobolus virginicus. Front Plant Sci 6:241

    Article  PubMed  PubMed Central  Google Scholar 

  53. Wei W, Qi X, Wang L et al (2011) Characterization of the sesame (Sesamum indicum L.) global transcriptome using Illumina paired-end sequencing and development of EST-SSR markers. BMC Genomics 12(1):451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Huang R, Wallqvist A, Covell DG (2006) Comprehensive analysis of pathway or functionally related gene expression in the National Cancer Institute’s anticancer screen. Genomics 87:315–328

    Article  CAS  PubMed  Google Scholar 

  55. Wang S, Wang X, He Q et al (2012) Transcriptome analysis of the roots at early and late seedling stages using Illumina paired-end sequencing and development of EST-SSR markers in radish. Plant Cell Rep 31:1437–1447

    Article  CAS  PubMed  Google Scholar 

  56. Hiz MC, Canher B, Niron H, Turet M (2014) Transcriptome analysis of salt tolerant common bean (Phaseolus vulgaris L.) under saline conditions. PLoS ONE 9(3):e92598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Tao X, Gu YH, Wang HY et al (2012) Digital gene expression analysis based on integrated De Novo transcriptome assembly of sweet potato [Ipomoea batatas (L.) Lam.]. PLoS ONE 7(4):e36234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lal S, Ravi V, Khurana JP, Khurana P (2009) Repertoire of leaf expressed sequence tags (ESTs) and partial characterization of stress-related and membrane transporter genes from mulberry (Morus indica L.). Tree Genet Genomes 5:359–374

    Article  Google Scholar 

  59. Lambers H, Poorter H (1992) Inherent variation in growth rate between higher plants: a search for ecological causes and consequences. Adv Ecol Res 23:187–261

    Article  CAS  Google Scholar 

  60. Le DT, Nishiyama R, Watanabe Y et al (2012) Differential gene expression in soybean leaf tissues at late developmental stages under drought stress revealed by genome-wide transcriptome analysis. PLoS ONE 7:e49522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Matsui A, Ishida J, Morosawa T et al (2008) Arabidopsis transcriptome analysis under drought, cold, high-salinity and ABA treatment conditions using a tiling array. Plant Cell Physiol 49:1135–1149

    Article  CAS  PubMed  Google Scholar 

  62. Ma S, Gong Q, Bohnert HJ (2006) Dissecting salt stress pathways. J Exp Bot 57:1097–1107

    Article  CAS  PubMed  Google Scholar 

  63. Coley PD (1986) Costs and benefits of defense by tannins in a neotropical tree. Oecologia 70:238–241

    Article  PubMed  Google Scholar 

  64. PG Waterman (1989) Herbivory and secondary compond in rain-forest plants. Trop Rain For Ecosyst 513–536

  65. Shaw BP, Sahu SK, Mishra RK (2004) Heavy metal induced oxidative damage in terrestrial plants. Heavy metal stress in plants. Springer, Berlin, pp 84–126

    Chapter  Google Scholar 

  66. Wasternack C (2007) Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann Bot 100:681–697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Sun W, Xu X, Zhu H et al (2010) Comparative transcriptomic profiling of a salt-tolerant wild tomato species and a salt-sensitive tomato cultivar. Plant Cell Physiol 51:997–1006

    Article  CAS  PubMed  Google Scholar 

  68. Liu Q, Kasuga M, Sakuma Y et al (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene gxpression, respectively, in Arabidopsis. Plant Cell 10:1391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Mathithumilan B, Kadam NN, Biradar J et al (2013) Development and characterization of microsatellite markers for Morus spp. and assessment of their transferability to other closely related species. BMC Plant Biol 13(1):194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Varshney RK, Graner A, Sorrells ME (2005) Genic microsatellite markers in plants: features and applications. Trends Biotechnol 23:48–55

    Article  CAS  PubMed  Google Scholar 

  71. Varshney RK (2010) Gene-based marker systems in plants: high throughput approaches for marker discovery and genotyping. Molecular techniques in crop improvement. Springer, Netherlands, pp 119–142

    Chapter  Google Scholar 

  72. Jones ES, Sullivan H, Bhattramakki D, Smith JSC (2007) A comparison of simple sequence repeat and single nucleotide polymorphism marker technologies for the genotypic analysis of maize (Zea mays L.). Theor Appl Genet 115:361–371

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The authors gratefully acknowledge the Director, CSRTI, Mysuru for providing an opportunity to undertake the research work.

Author information

Authors and Affiliations

Authors

Contributions

VGN provided the experimental materials. MSR designed the workflow and conducted the experiment. RS and MSR performed the bioinformatics analysis and drafted the manuscript. VGN guided the work, critically evaluated data interpretation and revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Vorkady Girish Naik.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rukmangada, M.S., Sumathy, R. & Naik, V.G. Functional annotation of mulberry (Morus spp.) transcriptome, differential expression of genes related to growth and identification of putative genic SSRs, SNPs and InDels. Mol Biol Rep 46, 6421–6434 (2019). https://doi.org/10.1007/s11033-019-05089-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-019-05089-8

Keywords

Navigation